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ABSTRACT 

BAO, HAN. Development of a Data-driven Framework for Mesh-Model Optimization in System-

level Thermal-Hydraulic Simulation. (Under the direction of Dr. Nam T. Dinh). 

 

Over the past decades, several computer codes were developed for simulation and analysis 

of thermal-hydraulics of reactor cores, reactor coolant systems, and containment behaviors in 

nuclear reactors under operating, abnormal transient and accident conditions. However, the 

simulation errors and uncertainties still inevitably exist even while these codes have been 

extensively assessed and used to support design, licensing, and safety analysis of the plants. Main 

difficulty comes from the complexity of these multi-phase physical phenomena in the transient 

scenarios, the inevitable simulation error sources and user effects. 

In this work, a data-driven framework (Optimal Mesh/Model Information System, OMIS) 

for the optimization of mesh and model in system-level thermal-hydraulic simulation is formulated 

and demonstrated. OMIS framework is developed to estimate simulation error and suggest optimal 

selection of coarse mesh size and models for low-fidelity simulation, such as coarse-mesh 

Computational Fluid Dynamics-like (CFD-like) codes, to achieve computationally-effective 

accuracy comparable to that of high-fidelity simulation, such as high-resolution CFD. It takes 

advantages of computational efficiency of coarse-mesh simulation codes and regression capability 

of machine learning algorithms. Instead of expensive computation using fine-mesh as in CFD 

methods, a cluster of case running with different coarse mesh sizes are performed to obtain the 

error database between low-fidelity and high-fidelity data. The error database is used to train a 

machine learning model and find the essential relationship between local simulation error and local 

physical features, then generate insight and help correct low-fidelity simulations for similar 

physical conditions. Based on the idea of TDMI (Total Data-Model Integration), the specific 

closure models, local mesh sizes and numerical solvers are treated as an integrated model. Data 

obtained from this integrated model is used to construct a library that identifies and stores the local 

similarities in different physical conditions. This library is self-improvable and automatically 

updated as new qualified data is available. OMIS framework is completed as a six-step procedure; 

each step is independent and accomplished with methods and algorithms in the state of the art. A 

mixed convection case study was designed and performed to illustrate the entire framework. 

This work also provides an insight on the development of a data-driven scale-invariant 

approach to deal with scaling issues. According to the identification of global physics and local 
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physics, four different Physics Coverage Conditions (PCCs) are classified as Global Interpolation 

through Local Interpolation (GILI), Global Interpolation through Local Extrapolation (GILE), 

Global Extrapolation through Local Interpolation (GELI) and Global Extrapolation through Local 

Extrapolation (GELE). The underlying local physics is assumed to be represented by a set of 

physical features. GELI condition indicates the situation that the global physical condition of new 

case is identified as an extrapolation of existing cases, but the local physics are similar. Exploring 

the local physics with the usage of advanced machine learning techniques makes it possible to 

bridge the global scale gap. Targeting on “GELI” condition, OMIS framework treats multi-scale 

data and machine learning techniques in a formulized manner. Different GELI conditions, such as 

the extrapolation of global parameters, geometry, boundary condition and dimension have been 

discussed based on the mixed convection case study. The similarity between the training data and 

testing data is quantified by the defined extrapolation distance. It shows that the prediction by well-

trained data-driven model has higher accuracy as the similarity of training data and testing data 

increases. 
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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

Quantification of Nuclear Power Plant (NPP) safety risk requires a systematic and yet 

practical approach to identification of accident scenarios, assessment of their likelihood and 

consequences. Instrumental to this goal is Risk-Informed Safety Margin Characterization 

(RISMC) framework [1], whose realization requires computationally robust and affordable 

methods for sufficiently accurate simulation of complex multi-dimensional physical phenomena, 

such as turbulence, heat transfer and multi-phase flow. Thermal-hydraulics is considered as one of 

the key disciplines essential for progress in nuclear science, making reference to NPP design and 

Nuclear Reactor Safety (NRS). Over the past decades, a number of computer codes were developed 

for simulation and analysis of thermal-hydraulics of reactor cores, reactor coolant systems, and 

containment behaviors in NPP under operating, abnormal transient and accident conditions. 

However, the simulation errors and uncertainties still inevitably exist even while these codes have 

been extensively assessed and used to support design, licensing, and safety analysis of the plants. 

Main difficulty comes from the complexity of these multi-dimensional multi-phase 

physical phenomena in the transient scenarios. These phenomena locate in the different NPP 

components with complex geometries and structures, which makes it impossible to perfectly model 

and simulate the entire NPP thermal-hydraulic systems in all time and length scales. The nuclear 

industry and research communities reacted to this challenge in two ways: performing 

comprehensive experiments to reproduce expectable reactor accident conditions and developing 

numerical codes to analyze the transient thermal-hydraulic performance by the massive use of 

computers. Therefore, the development of thermal-hydraulic codes greatly benefits from the 

massive use of computational capability and fundamental studies based on experimental programs. 

Normally, there are three types of computational codes used for thermal-hydraulic analysis. The 

first type is called lumped-parameter code or system code, such as REALP 5, TRAC, ATHLET, 

MELCOR and MAAP, etc. These codes describe an NPP thermal-hydraulic system as a network 

of simple control volumes connected with junctions. The control volumes are modeled as 

homogeneous and described by single values of temperature, pressure and other variables. 

Turbulence effects are not directly modeled but could be considered using assumed flow-loss 

coefficients in the momentum equation. [2] Aiming at fast obtaining the overall system response, 
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much local information is lost when the time and geometry (including volume and area) averaging 

approaches are applied on the local instantaneous two-fluid models. The second type is 

Computational Fluid Dynamics (CFD) code that has become commonly used for computer codes 

that numerically solve the transport equations of fluid mechanics (continuity, momentum and 

energy) using a local instantaneous formulation. These CFD codes (e.g., STAR-CCM+, 

OpenFOAM) consider the influence of turbulence using different turbulent models. Thermal-

hydraulic analysis using CFD codes is computationally expensive since million cells might be 

needed even for modeling of a single NPP component. 

Different from standard system codes (with much loss of local information) and standard 

CFD codes (with huge computational cost) for system-level thermal-hydraulic modeling and 

simulation of NPPs, this dissertation defines the third type as coarse-mesh CFD-like code. These 

codes with 3D simulation capability and full treatment of momentum transport terms ensure 

computational efficiency using coarse mesh size and the sub-grid phenomena in the boundary layer 

that can be captured by adequate constitutive correlations (e.g., wall functions and turbulence 

models). In contrast to standard CFD codes, these codes, such as GOTHIC [3], do not have a body-

fitted coordinate capability: the subdivision of a volume into a multi-dimensional grid is based on 

orthogonal co-ordinates, and the code uses boundary-layer correlations for heat, mass and 

momentum exchanges between the fluid and the structures, rather than attempting to model the 

boundary layers specifically. Therefore, these codes have natural advantages compared with 

standard system codes and CFD codes to achieve sufficient accuracy for long-term multiple-

component system simulation. These CFD-like codes have been extensively used for containment 

thermal-hydraulic analysis. [4-6] 

However, two main error sources exist in the modeling and application of these coarse-

mesh CFD-like codes. They solve the integral form of conservation equations for mass, momentum 

and energy for multi-component, multi-phase flow. Boundary-layer correlations are applied for 

heat, mass and momentum exchanges between the fluid and the structures, rather than attempting 

to model the boundary layers specifically. Respective characteristic lengths of these empirical 

correlations are default calculated using the local mesh size. Therefore, the mesh size greatly 

affects the performance of the empirical correlations in the local near-wall cells and becomes one 

key model parameter that determines whether the correlations are applied in their applicable ranges 

or not. Model error due to physical simplification and mathematical approximation on these 
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applied models, correlations and assumptions is one of the main error sources. Another one is 

called “mesh error” that indicates the information loss of conservative and constitutive equations 

during the application of time and space averaging approaches. The local instantaneous Partial 

Differential Equations (PDEs) for mass, momentum and energy balance are space averaged to 

obtain the finite volume equations. Simulation results represent the averaged values of parameters 

over specified regions, which ignores the local gradient information. Other numerical errors have 

less influence on the modeling and simulation compared to model error and mesh error. 

Since both main error sources are tightly connected with local mesh size, the nodalization 

of control volumes determines whether the user can get a relatively good simulation result or not. 

The finite mesh/volume approach, particularly in the coarse scheme of NPP simulations, could fail 

in not capturing the expected local behaviors of the fluids (sharp gradients of variables) due to 

limited resolution. On the other hand, a finer nodalization could introduce an improper extending 

of boundary-layer empirical correlation. All these factors make the selection of mesh size and 

model information (model parameter and model form) be an important but tricky task in the 

system-level thermal-hydraulic modeling and simulation using these CFD-like codes. In the 

current applications, the mesh size and models are selected based on previous modeling 

experience, this kind of “educated guess” may lead to an error for the new physical conditions. 

Therefore, a smart guide is urgently needed to provide advice on the optimal selections of coarse 

mesh size and models. 

1.2. Overview of Traditional Model Validation Frameworks 

The tight connection between model error and mesh error makes it difficult to perform 

traditional Verification and Validation (V&V) on these coarse-mesh CFD-like codes to analyze 

these two errors separately, although the development of system thermal-hydraulic codes greatly 

benefits from the massive use of computers and fundamental studies based on experimental 

programs. The evaluation of safety margins, the operator training, the optimization of the plant 

design and related emergency operating procedures, are some of the applications of these codes, 

which essentially deal with the solution of the balance equations for steam-liquid two-phase 

mixtures supplemented by the constitutive equations. [7] The integrated modeling and simulation 

of primary system and containment was considered necessary for the prediction of the overall 

system performance. As the rapid and wide use of system-level thermal hydraulic codes, V&V of 
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these codes have been recognized as a mandatory part before their application on safety analysis 

and licensing due to the lack of physical knowledge and the lack of confidence on the code 

capability. Historically, United States Nuclear Regulatory Commission (USNRC) published rules 

for Loss-of Coolant Accident (LOCA) analysis in 10CFR 50.46 and Appendix K in 1974, which 

established the initial licensing procedures with a conservative approach. However, the 

conservative approach brought in some problems: (1) the conservatism proved in scaled-down 

tests may be not still valid in the full-scale plants; (2) the conservative approach is not suitable for 

Emergency Operating Procedure (EOP) studies. [8] 

• Code Scaling and Applicability Uncertainty (CSAU) 

Therefore, USNRC initiated an effort to develop and demonstrate a licensing acceptable 

Best Estimate plus Uncertainty (BEPU) method that provided nuclear plant operators with more 

economic gains and less conservation. The Code Scaling and Applicability Uncertainty (CSAU) 

method was formulated to provide more realistic estimates of plant safety margins for large break 

LOCA in a Pressurized Water Reactor (PWR) in 1990. [9] The first element of CSAU is to specify 

the requirement and code capability to the transient scenarios. The PIRT (Phenomena 

Identification and Ranking Table) process was proposed to reduce the complexity of the transient 

scenarios. Expert judgment was needed to identify and rank different phenomena relevant to the 

Figures of Merit (FOMs). The phenomena were arranged hierarchically based on transient phase, 

system components, and underlying phenomena. The second element of CSAU is assessment and 

ranging of parameters. Identification of relevant Separate Effect Tests (SETs) and Integral Effect 

Tests (IETs) are involved for code validation. Scaling analysis was introduced here to determine 

the code scalability. However, there was no a pellucid explanation on how to evaluate the effects 

of scale distortion on important processes. Besides, as CSAU targets on system codes, the 

nodalization for NPP calculations was the main uncertainty source and thus fixed before the 

determination of scale effect. The mesh effect on the code/model accuracy was not fully 

considered, little attention was put on mesh sensitivity study. This makes CSAU not suitable for 

the validation of coarse-mesh CFD-like codes since mesh is also one of key model parameters. In 

the third element, response surface method was used to estimate the overall uncertainties in the 

prediction of the FOMs.  

 

https://en.wikipedia.org/wiki/Nuclear_Regulatory_Commission
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• Evaluation Model Development and Assessment Process (EMDAP) 

In 2005, USNRC issued another important document Regulatory Guide (RG) 1.203 to 

provide an acceptable Evaluation Model Development and Assessment Process (EMDAP) for the 

best estimate calculations of NPP transient and accident analysis. [10] EMDAP aimed to evaluate 

the adequacy of the applied codes and provide guidance for the following experiment and 

analytical tool development. The basic principles of EMDAP were developed based on the CSAU 

methodology, while EMDAP has formal and explicit descriptions for the concepts, definitions and 

processes, including the PIRT, assessment base, evaluation model, scaling analysis. After the 

logical and comprehensive validation, the decision process was executed to evaluate whether the 

code meets the adequacy standard and can be used for plant scenario analysis. However, the 

acceptance criteria were not clearly defined. One significant difference between EMDAP and 

CSAU is that the scalability of SET/IET facilities and code/model scalability were evaluated 

separately in different elements of EMDAP. Scalability analysis was executed for both of data and 

code. Same as CSAU, the system analysis and scaling analysis in EMDAP are highly heuristic and 

difficult to implement.  

Mesh effect on code/model scalability was not fully considered in CSAU and EMDAP. 

They both recognized the existence of mesh sensitivity and required a mesh sensitivity study to 

make sure important FOM (e.g., PCT) are not significantly impacted. They assumed that a 

"constant" uncertainty was introduced between the scaled tests and plant application by applying 

the same modeling guidelines and consistent nodalization for both. However, the fact that mesh 

size could be one of the key model parameters and have an effect on code/model applicability was 

not fully considered since the mesh sensitivity was performed before the code/model scalability 

analysis. More discussions on EMDAP is in Chapter 7. 

• Predictive Capability Maturity Model (PCMM) 

In 2007, Predictive Capability Maturity Model (PCMM) was developed by Sandia National 

Laboratories as a decision model for maturity assessment of modeling and simulation tools. [11] 

Comparing to CSAU and EMDAP, PCMM explicitly treats the model credibility and uncertainty 

analysis as a decision-making process with explicit structures. After specifying the target 

application and corresponding model, eight elements were designed and assessed: (1) 

Representation and geometric fidelity, (2) Physics and material model fidelity, (3) Software quality 
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assurance, (4) Code verification, (5) Solution verification, (6) Separate effects model validation, 

(7) Integral effect model validation, (8) Uncertainty quantification and sensitivity analysis. These 

eight elements act as decision attributes and form the basis for the decision regarding the maturity 

of a computer simulation code for the intended use. Then a qualitative assessment for each attribute 

was performed according to a PCMM matrix and characterized each attribute with different levels 

of maturity. Lastly, the achieved levels of maturity were compared with the level standards for the 

final decision making on validation adequacy. One significant benefit of PCMM is that code 

verification and model validation are explicitly distinguished by a formal definition for credibility 

assessment. However, the scaling effects were not clearly discussed which limited the PCMM 

capability in validating complex systems with multiple scales and physics. Recently, a validation 

framework called Predictive Capability Maturity Quantification (PCMQ) has been developed to 

support PCMM for maturity estimation of CASL (Consortium for Advanced Simulation of Light 

Water Reactors) challenging problem and application. [12] It provided a reason-based conceptual 

approach for structural knowledge representation, evidence incorporation and confidence 

assessment for implementation of PCMM for the intended applications. Maturity quantification is 

obtained using different techniques, like Fuzzy logic and Bayesian network that are well known 

for their ability to integrate subjective information (based on expert knowledge and judgment) with 

objective data (evidence). [13] 

1.3. Overview of Data-driven Applications based on Total Data-Model Integration 

In 2013, some new perspectives have been proposed on the nuclear reactor thermal-

hydraulics. [14] It was envisioned that “in the future, the complex and varied issues of nuclear 

reactor thermal-hydraulic processes could be addressed effectively and efficiently by developing 

and implementing a data-driven framework for modeling and simulation that brings together and 

allows for all relevant data and knowledge to be utilized together to enable synergistically 

predictive tools and processes for nuclear thermal-hydraulics”. The concept of “data-driven 

modeling and simulation framework” enables the simulation code applying pattern recognition 

and statistical analysis to obtain required closure information directly from the relevant database 

generated from huge amounts of experiments and simulations. The core of OMIS framework is 

the assumptions, methods and tools for Total Data-Model Integration (TDMI) that bring together 

data, physical models and simulations to effectively support decision-making in engineering 

applications. This data-driven concept makes great usage of the rich High-Fidelity (HF) data 
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instead of having to converting the data into separate physical models where a great deal of 

information has to be abandoned. For conditions where directly applicable data is absent, the 

information can be predicted based on the near-by conditions included in the database. Uncertainty 

due to the lack of data can be reduced as new data becomes available. HF data refers to the data 

that have been adequately validated and has a potential to be used to reduce the simulation 

uncertainty from Low-Fidelity (LF) modeling and simulation. 

Nowadays, the explosive development of Machine Learning (ML) algorithms and massive 

data available from numerical simulations make the idea of TDMI realistic and feasible. There 

have already been several efforts to apply ML algorithms on fluid dynamics since the beginning 

of this century. According to a classification of machine learning frameworks for thermal fluid 

simulation introduced by Chang et al. [15], current efforts mainly belong to Type I or Type II ML. 

Type I ML aims at developing new closure models assuming that conservation equations and 

closure models are scale separable. Type II ML concentrates on reducing the uncertainty of LF 

simulation by “learning” from HF data. Both of them requires a throughout understanding of the 

physical system and sufficient prior knowledge on closure models. These limitations make current 

data-driven approaches for specific local closure laws not applicable to the complex system-level 

thermal-hydraulic modeling and simulation of plants. The complexity of prior knowledge 

extremely increases when all the components, processes and involved phenomena in reactor 

systems should be considered together. A data-driven approach with less knowledge required is 

urgently needed for complex situations, especially when a great amount of HF data and 

computation capability are available. Based on the concept of TDMI, a Validation and Uncertainty 

Quantification (VUQ) framework for Eulerian-Eulerian two-fluid-model based multiphase CFD 

solver has been formulated. [16] The proposed framework applies Bayesian method to inversely 

quantify the uncertainty of the solver predictions with the support of multiple experimental data. 

However, the numerical error introduced in the discretization of the Partial Differential Equations 

(PDEs) is not considered. Besides, the statistical methods applied in the framework also introduce 

additional uncertainty which is difficult to be estimated. 

In the Integral Research Project of “Development and Application of a Data-Driven 

Methodology for Validation of Risk-Informed Safety Margin Characterization Models”, a 

validation framework, named Risk-informed Evaluation Model Development and Assessment 

Process (REMDAP), is proposed for the validation of RISMC models. [17] REMDAP is designed 
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based on the framework of EMDAP and the methodology of CSAU by combining data-driven and 

risked-informed concepts. REMDAP aims to shift from current expert-determined validation 

approach to a data-driven approach including the data-driven closure development, data-driven 

uncertainty quantification, and PCMQ with Bayesian Network.  

Industry also shows interest and provide requirements for the development and 

demonstration of this data-driven methodology for the validation of Risk-Informed Safety Margin 

Characterization (RISMC) models for nuclear power plant safety analysis. [18] In order to increase 

the likelihood of industry acceptance and adoption of a data-driven code framework, following 

validation requirements that should be satisfied as a foundation have been proposed:  

1. Testing/training priorities. The framework should focus first on areas where significant 

value can be added with a new approach. The model should be considered acceptable for the 

application if additional information would not affect the performance of this particular 

computational model. 

2. Avoidance of overfitting. Due to the existence of data bias and noise, high-complexity 

machine learning models may overfit the data into some artificial trends. It should be considered 

by developers whether the data-driven model fully captures the underlying physics in a sufficient 

and necessary level of fidelity. The balance between accuracy and computational efficiency should 

be paid attention. 

3. Model evaluation. Evaluations on data-driven models should be cross-benchmarked to 

traditional methods and clear visual representations should be used to demonstrate compliance. 

4. Uncertainty quantification. For the regions where validation data of models is not 

available, the uncertainty in model/code output should be considered and quantified. 

1.4. Dissertation Overview 

In order to provide error prediction and advice on the optimal selections of mesh size and 

models for system-level thermal hydraulic simulation, a data-driven framework (Optimal 

Mesh/Model Information System, OMIS) is proposed in this work. OMIS framework is developed 

for the thermal-hydraulic codes that have the following features: using coarse mesh sizes and 

applying simplified boundary-layer correlations whose applicable ranges depend on respective 
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characteristic lengths, such as CFD-like codes or coarse-mesh Reynolds-averaged Navier–Stokes 

(RANS) methods with wall functions.  

1.4.1. Objectives of Dissertation 

The objective of this work is to develop and demonstrate a data-driven framework to, 

1. Estimate the local simulation error using Machine Learning (ML) algorithms; 

2. Give advice on the optimal selection of coarse mesh size and models for low-fidelity 

simulations (e.g., system codes, CFD-like codes or Coarse-Grid CFD codes) to achieve accuracy 

comparable to that of high-fidelity data (e.g., DNS or high-resolution CFD).  

In addition to improve the coarse-mesh simulations, this work also aims to develop a 

technical basis for the validation and uncertainty quantification of CFD-like codes in system 

thermal-hydraulic modeling and simulation 

1.4.2. Technical Approach 

The technical approach to develop and demonstrate the proposed framework includes, 

1. Review pros and cons of current traditional and data-driven V&V frameworks if applied 

to the coarse-mesh CFD-like codes for system thermal-hydraulic modeling and simulation; 

2. Considering a multi-disciplinary nature of the proposed development, review the 

required knowledge and efforts from multidisciplinary fields including system thermal-hydraulic 

modeling and simulation, statistics, machine learning, and V&V; 

3. Investigate necessary technical capabilities and develop a methodology including basic 

concepts, basic assumptions and hypotheses, and the data-driven optimization framework. Each 

step of the proposed framework should be sufficiently explicit to be implemented; 

4. Construct test matrix and synthetic cases to demonstrate how to apply the framework to 

a system thermal-hydraulic simulation; 

5. Summarize lessons learned from the synthetic cases and plan future work to improve the 

framework. 

1.4.3. Dissertation Structure 

The dissertation has following chapters: 
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Chapter 2 introduces technical background of the proposed OMIS framework including 

error analysis of current thermal-hydraulic codes, literature review on data-driven applications on 

fluid dynamics, and the scope of this work. 

Chapter 3 reviews the LF simulation tool, GOTHIC, which is a coarse-mesh CFD-like 

software initially developed for containment thermal-hydraulic analysis. The structure on thermal-

hydraulic modeling is described including conservation equations, source terms, and closure 

models involved. The relationship between mesh and key closure models are discussed. In 

addition, a qualitative assessment of thermal-hydraulic simulation using GOTHIC is performed 

including mesh and model sensitivity study. 

Chapter 4 reviews the ML algorithms applied in this work: one-layer Forward Neural 

Network (FNN) and Deep Neural Network (DNN). 

Chapter 5 describes methodology of the proposed OMIS framework. Mathematical basis, 

practical consideration, basic assumptions and hypotheses are introduced. Each step of the 

framework is explicitly described with the applied methods, algorithms and equations. 

Chapter 6 discusses the case study on mixed convection simulation in a cavity. Different 

global extrapolation conditions are designed to illustrate the proposed data-driven framework and 

approach. Lessons learned from case study are also recorded for the improvement of the 

framework in the future. 

Chapter 7 represents the effort to integrate OMIS framework and EMDAP. The data-driven 

OMIS framework has a potential to be a supplement to make the implement of EMDAP feasible 

and practical. 

Chapter 8 summarizes the remarks and the contributions of this work. 

1.5. Terminology and Definitions of Related Concepts 

• Data Convergence: 

Normally, convergence is a means of modeling the tendency for the genetic characteristics 

of populations to stabilize over time. Data convergence in machine learning training and prediction 

process implies that the prediction for the genetic characteristics of populations tends to stabilize 

with increasing size of the training database. 
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• Data-Driven Modeling (DDM) 

The concept of DDM is based on analyzing the data about a system, in particular finding 

connections between the system state variables (input, internal and output variables) without 

explicit knowledge of the physical behavior of the system. DDM focuses on computational 

intelligence and Machine Learning (ML) algorithms that can be used to build models for 

complementing or replacing physics-based models. This concept is proposed opposite to the 

concept of conventional theory-driven modeling. 

• High-Fidelity (HF) Data and Low-Fidelity (LF) Simulation: 

The concept of fidelity represents the degree to which the models or simulations is close to 

their real world referents or to other simulations in such terms as accuracy, scope, resolution, level 

of detail, level of abstraction and repeatability. In thermal-hydraulic analysis, experimental data 

and numerical simulation result using validated code or DNS (Direct Numerical Simulation) can 

be considered as the High-Fidelity (HF) data for model or code validation. 

HF data is regarded as the sufficiently accurate data considering the true physics is 

unknown. HF data can be the experimental data, DNS simulation result or numerical data from 

validated thermal-hydraulic simulation codes with fine mesh and HF models. LF simulation 

implies the un-validated simulations using system-level thermal hydraulic codes with coarse mesh 

and simplified physical models with low fidelity. HF does not only indicate fine mesh, but also the 

HF models and algorithms applied in the codes. The application of OMIS framework is trying to 

minimize the difference between HF data and LF simulation results on the FOMs in system-level 

thermal hydraulic simulations, so that the LF simulations are computationally cheaper than HF 

simulations of finer-mesh CFD and meanwhile have higher accuracy than the no-guide one-shot 

use of system-level thermal hydraulic codes. 

• Coarse-mesh CFD-like Codes: 

Considering the drawbacks of LP codes and CFD codes, in order to obtain computationally 

efficient, some codes are developed specifically for the analysis of containment thermal hydraulics 

using coarse-mesh nodalization. Special equipment of a NPP containment like spay, pump, turbine 

and hydrogen recombiner are modeled in the containment-specific codes. These codes have 

usually been validated using relevant experiments corresponding to the phenomena occurring in 
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containment. Most of these containment-specific codes applies porous media approach. The main 

characteristics of those codes are, 

CFD-like: As these codes (e.g., GOTHIC) are developed for the simulation of large 

containment compartments, coarse numerical grids are applied to divide the large control volumes 

into several coarse-mesh cells. GOTHIC includes a full treatment of the momentum transport 

terms in multi-dimensional models, with optional models for turbulent shear, and for turbulent 

mass and energy diffusion. The hydraulic model of GOTHIC is based on a network of 

computational volumes (1D, 2D and 3D) connected by flow paths. In contrast to standard CFD 

codes, those codes do not have a body-fitted coordinates capability: the subdivision of a volume 

into a multi-dimensional grid is based on orthogonal co-ordinates, and the code uses boundary-

layer correlations for heat, mass and momentum exchanges between the fluid and the structures, 

rather than attempting to model the boundary layers specifically. 

• Mesh Error vs. Discretization Error 

The discretization error is proposed from the classic Verification and Validation (V&V) 

point of view for the solving of Partial Differential Equations (PDEs), which assumes that when 

mesh size goes to zero the solution of PDEs converges. However, due to the correlation-based 

design in the simplified boundary-layer treatment, GOTHIC is not expected to converge when 

mesh size goes to zero due to very fine mesh may not satisfy the applicability of these empirical 

correlations. GOTHIC applies finite volume technique with cell volume and surface porosities for 

complex geometries. The local instantaneous PDEs for mass, momentum and energy are time and 

space averaged to obtain the finite volume equations. Results from GOTHIC represent the 

averaged values of parameters over specified regions, not the exact value at the central points of 

the regions. Therefore, mesh error indicates the information loss of conservative and constitutive 

equations during the application of time and space averaging approaches. Other numerical errors 

in the system code due to iterative convergence, algorithm selection, coding error and finite 

arithmetic also exist in GOTHIC, but have less influence on the modeling and simulation compared 

to model error and mesh error. 

• Scale Invariant 

Scale invariant represents the entities that are independent of scale, such as physics, DNS 

models. Scale invariant approaches are the ideal approach to explore and predict behaviors in real 
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full-scale applications. There are two kinds of scale-invariant approaches: (1) Full-scale (or 

physics-conserved) experiment, which is (presumably) independent on the facility scale, (2) DNS 

modeling where the local information is solved accurately with very fine mesh. Reduced-order 

models e.g., LES (Large Eddy Simulation), RANS models and system codes are not scale-invariant 

approaches. 

• Scaling Uncertainty 

The empirical models used in system codes are generally developed from the experiments 

where the IC/BC (Initial Condition/Boundary Condition) and geometry were not the typical NPP 

operating conditions, so many of them do not have the scalability to the nuclear reactor 

applications. Besides, some tuning constants, such as flow resistance coefficients, heat transfer 

fouling factors were used in the validation process to satisfy better agreement between the test data 

and the simulation. However, in fact, these tuning constants are not scalable for the extrapolation 

conditions although they could cover up the distortions in some specific conditions. The extending 

use of developed models from a scaled test to a NPP application requires a great deal of evaluation 

and calibration. The effect of scaling on the model error/uncertainty calibrated from the data from 

scaled experiments greatly influences the accuracy of simulation and leads to an unknown 

error/uncertainty. The uncertainty due to scaling effect is called scaling uncertainty. 

• Physics Coverage Condition 

According to the identification of global physics and local physics, four different physics 

coverage conditions are classified as Global Interpolation through Local Interpolation (GILI), 

Global Interpolation through Local Extrapolation (GILE), Global Extrapolation through Local 

Interpolation (GELI) and Global Extrapolation through Local Extrapolation (GELE). Global 

physics indicates the global or macroscopic state, observation and deduction of the simulation 

target condition, such as the dimension, geometry, structure, boundary condition and non-

dimensional parameters that represent the underlying physics; while local physics refers to the 

microscopic state, observation and deduction of the simulation target condition. For example, the 

global physics of turbulent flow can be characterized using different values of Re number and 

geometries. No matter how Re number or geometry changes, the local physics is always turbulence 

if the Re number is big enough. From the perspective of data characteristics, the underlying local 

physics is assumed to be represented by a set of Physical Features (PFs). 
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• Physical Feature Coverage (PFC) 

As mentioned before, the underlying local physics is assumed to be represented by a set of 

Physical Features (PFs). The similarity of PFs in training data and testing data can be visualized 

and measured using dimensionality reduction techniques. Physical Feature Coverage (PFC) 

implies the similarity or difference between the training data and testing data. The similarity is 

represented by the coverage (or covered portion) of physical feature between training data and 

testing data. It is expected that the training data and testing data tends to represent the same local 

physics as the covered portion approaches to 1. The similarity is depending on the identification 

of PFs, data quality and quantity. The prediction by well-trained data-driven model is assumed to 

have higher accuracy as the similarity of training data and testing data increases. 
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CHAPTER 2. TECHNICAL BACKGROUND 

2.1. Introduction 

This chapter describes the technical background of the proposed data-driven methodology 

including error analysis of current thermal-hydraulic codes in Section 2.2, literature review on 

data-driven applications on fluid dynamics in Section 2.3, and the scope of this work in Section 

2.4. 

2.2. Error Analysis of Thermal-Hydraulic Codes 

These coarse-mesh correlation-base CFD-like codes include a full treatment of the 

momentum transport terms in multi-dimensional models, with optional models for turbulent shear, 

and for turbulent mass and energy diffusion. The hydraulic model is based on a network of 

computational volumes (1D, 2D and 3D) connected by flow paths. This makes these codes become 

the first choice to achieve sufficient accuracy for long-term multiple-component system 

simulation. However, there are many challenges in their VUQ process. Those codes are based on 

equations for two-phase flow which are typically resolved in Eulerian coordinates. The two-phase 

flow field is described by mass, momentum, and energy conservation equations for the liquid and 

vapor phases separately and mass conservation equations for some noncondensable gases present 

in the mixture. Depending on the number of balance equations, different sets of constitutive 

equations are required to close the equation system. These constitutive equations need to describe 

the physical phenomena in a wide span of scale, ranging from down-scaled integral system 

experiments up to full size reactor geometry. Before applying these CFD-like codes into OMIS 

framework, it is necessary to understand: (I) error sources in traditional V&V perspective, (II) 

scaling issues in thermal-hydraulic applications and (III) error sources in the applications of these 

CFD-like codes. 

2.2.1. Uncertainty and Error Sources from Verification and Validation Perspective 

Due to the numerical approximations and the empirical nature of the included models in 

the thermal-hydraulic system codes, extensive activities related to Verification and Validation 

(V&V) of those codes have been pursued during the years. Verification is defined as “the process 

of determining that a model implementation accurately represents the developer’s conceptual 

description of the model and the solution to the model”. [19] The fundamental strategy of 
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verification is the identification and quantification of error in the computational solution through 

the assessment of coding reliability (as code verification) and the numerical accuracy of 

computational model (as solution verification). Validation is defined as “the process of 

determining the degree to which a model is an accurate representation of the real physics”. [19] 

The fundamental strategy of validation is the identification and quantification of error and 

uncertainty in the simulation results by comparison with experiments. Although the huge amounts 

of financial and human resources spent on the process of V&V, the results predicted by the code 

are still affected by errors and uncertainties whose sources can be attributed to several reasons as 

model deficiencies due to physics simplification, approximations in the numerical solution, system 

nodalization, and the imperfect knowledge of Initial Condition/Boundary Condition (IC/BC). The 

interchangeable use of the terms “uncertainty” and “error” in many texts and articles leads to a 

great deal of misinterpretation and confusion of fundamental concepts and simulation analysis. 

The concept of uncertainty fundamentally represents whether the source is stochastic in 

nature or lack of knowledge in nature. During the past decades, the risk assessment community, 

primarily the Nuclear Reactor Safety (NRS) community, has developed the most workable and 

effective categorization of uncertainties: aleatory and epistemic uncertainties. Aleatory uncertainty 

is defined as “the inherent variation associated with the physical system or the environment such 

as the variation in thermodynamic properties due to manufacture”. [19] Common sources of 

aleatory uncertainty include system parameters, IC/BCs that may vary randomly from component 

to component and/or system to system. Epistemic uncertainty represents the potential deficiency 

in the modeling due to lack of knowledge. In the risk assessment community, it is common to refer 

to epistemic uncertainty simply as uncertainty and aleatory uncertainty as variability. “Epistemic 

uncertainty is a property of the modeler or observer, whereas aleatory uncertainty is a property 

of the system being modeled or observed”. [19] One of the main epistemic uncertainties in the 

thermal-hydraulic modeling and simulation is IC/BC uncertainty, which stems from the imperfect 

knowledge of the initial status of system component and boundary conditions imposed on the 

system.  

The concept of error commonly means “a recognizable inaccuracy from the true value in 

any phase or activity of modeling and simulation that is not due to the lack of knowledge”. [19] It 

does not address the random nature of the source, but focuses on the identification of the true value. 

However, in most simulations, the true value is unknown or not representable with finite precision; 
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and in experimental measurements of engineering and scientific quantities, the true value is never 

known. Therefore, the definition and accuracy of the true value determines whether the usefulness 

of the concept of error in practical applications. Sometimes experimental data and numerical 

simulation result using validated code or DNS can be considered as the HF data for model or code 

validation. [20] According to the different phases for a computational simulation [21], the sources 

of errors can be separated into three parts: measurement error, model error and numerical error as 

shown in Figure 1. If we consider experimental data as the true value of physics of interest, the 

model error and numerical error can be regarded as the main error sources during the modeling 

and simulation. 

Conceptual modeling phase concentrates on developing a specification of the physics of 

interest. The specification process includes the determination of physical events, the sequence of 

events and the way to couple different physical processes. No mathematical equations are written 

in this phase but the fundamental assumptions and simplifications of the complicated physical 

system and possible processes should be made. All the key and sensitive system and environment 

characteristics needs to be considered as detailed as possible. Mathematical modeling phase 

focuses on developing detailed and precise mathematical models for those characteristics. The 

mathematical models formulated in this phase include the complete specification of all PDEs, 

IC/BCs for the system. Meanwhile the mathematical issues such as non-linear problems lead to an 

acceptable approximation of conceptual models. Mathematical modeling also results in the 

epistemic uncertainties during the selection of appropriate physical models to represent the 

physical system and processes of interest. Presumably, only one model is more accurate for the 

simulation but it is also unknown in the prediction. Discretization phase accomplishes converting 

the mathematical models into discrete models. This phase deals with questions from the PDEs, 

stability of the numerical method, approximation of mathematical singularities and differences in 

zones of influence between the continuum and discrete systems. For the system-level simulation 

for two-phase flow using porous media approaches, the local instantaneous formulation of the 

differential balance equations is averaged in time and space with specific averaging methods to 

obtain time and volume averaged two-fluid model with structural materials in a control volume. 

Spatial distribution of variables and their effects on the balance and constitutive equations should 

be considered for volume-averaged model to avoid inaccurate modeling and numerical 

instabilities. The information is lost during the averaging of source terms and constitutive 
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equations. Algorithm selection and coding phase focuses on selecting appropriate numerical 

algorithm and convert the modeling and simulation procedure into a computer code. In this phase, 

error can be defined as the difference between the exact solution of discrete equation and the exact 

solution of mathematical model. Numerical solution phase focuses on computing the individual 

numerical solutions, only discrete values and discrete solutions exist with finite precision. The 

finite arithmetic on digital computers may lead to round-off errors. Solution representation phase 

concerns the representation and interpretation of both the individual and collective computational 

solutions. The collective results are ultimately used by decision makers while the individual results 

are typically used by engineers, physicists and numerical analysts. 

 

Figure 1. Main Error Sources during Phases for a Computational Simulation from Traditional 

V&V Perspective of Simulation Codes 

As was discussed above, the main uncertainty and error sources in traditional system-level 

thermal-hydraulic modeling and simulation are (1) IC/BC uncertainty; (2) Model error due to 

physical simplification and mathematical approximation; (3) Those numerical errors due to 

discretization, iterative convergence, algorithm selection, coding error and finite arithmetic.  

Notably, those uncertainties and errors can be propagated and difficult for the V&V if 

considering the “user effect”. The user effects can be defined as: Using the same code and same 

specifications (e.g. initial and boundary condition) the results of the calculations should be similar; 

otherwise the differences are coming from “user effects". [22] According to this definition, user 
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effect greatly influences on the selection of model form/parameter and system nodalization (mesh 

size), which are the main sources of uncertainties and errors in thermal-hydraulic modeling and 

simulation. Here error is defined as a recognizable inaccuracy in any phase or activity of modeling 

and simulation that is not due to lack of knowledge. Technically, there are some ways to obtain 

simulations that are more accurate by using smaller mesh sizes when solving PDEs or using more 

completed but accurate closure models for the systems. However, the accuracy can be considered 

acceptable or allowed to remain due to practical constraints such as computation cost or convenient 

modeling, especially in the analysis for the entire NPP systems. 

2.2.2. Scaling Issues in Thermal-hydraulic Application 

Scaling is the process of assessing the similarity of phenomena occurred/observed in 

reduced-scale test facility and the full-scale nuclear reactor application since it is impractical to 

perform experiments with the same size, pressure and power of the full-scale plants. Normally, the 

prediction of prototype-scale processes is performed using models developed based on scaled 

experiments. These scaled experiments are designed by decomposition and down scaling the full 

scale applications into easy-handling scaled tests with respect to the understanding of one or more 

of the phenomena involved in the real applications. Scaling issues indicates the difficulties and 

complexities stemming from the applicability of the data measured in the scaled experiments to 

the conditions expected in the prototype. The scaling issues arise from the impossibility of 

obtaining transient data from the prototype system under off-nominal conditions. Solving the 

scaling issues implies developing approaches, procedures, and data suitable for predicting the 

prototype’s performance utilizing small-scale models or data. [23] 

Scale invariant represents the entities that are independent of scale, such as physics, DNS 

models. Scale invariant approaches are the ideal approach to explore and predict behaviors in real 

full-scale applications. There are two kinds of scale-invariant approaches: (1) Full-scale (or 

physics-conserved) experiment, which is (presumably) independent on the facility scale, (2) DNS 

modeling where the local information is solved accurately with very fine mesh. However, full-

scale (fully physics-conserved) experiments are hard to build while many full-scale tests are 

required. Meanwhile DNS is computationally expensive to deal with the system scenario 

simulations. Reduced-order models e.g., LES (Large Eddy Simulation), RANS models and system 
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codes are not scale-invariant approaches. That is where scaling distortion exists, which refers to 

any discrepancy between the scaled parameter and the referenced plant parameters. 

Although scaling distortion exists, computer codes including the three types mentioned 

before are widely used in NPP safety analysis because of cost and time effectiveness. The empirical 

models used in system codes are generally developed from the experiments where the IC/BC and 

geometry were not the typical NPP operating conditions, so many of them do not have the 

scalability to the nuclear reactor applications. Besides, some tuning constants, such as flow 

resistance coefficients, heat transfer fouling factors were used in the validation process to satisfy 

better agreement between the test data and the simulation. However, in fact, these tuning constants 

are not scalable for the extrapolation conditions although they could cover up the distortions in 

some specific conditions. The ghost of scalability issues also haunts in the applications of CFD 

and CFD-like codes. There are several physical models (turbulence models, wall laws) and 

numerical schemes in these codes, the extending use of which from a scaled test to a NPP 

application requires a great deal of evaluation and calibration. The effect of scaling on the model 

error/uncertainty calibrated from the data from scaled experiments greatly influences the accuracy 

of simulation and leads to an unknown error/uncertainty. The uncertainty due to scaling effect is 

called scaling uncertainty. 

The data-driven framework proposed in this dissertation is expected to have the scalability 

to improve/correct the scale-distorted approaches that connect scaled data to the real full-scale 

applications and reduce the uncertainty of scaling. 

2.2.3. Error Analysis of CFD-like Codes  

Some error sources discussed in the previous part also exist in the modeling and application 

of these codes. They solve the conservation equations for mass, momentum and energy for multi-

component, multi-phase flow. The phase balance equations are coupled by mechanistic models for 

interface mass, energy and momentum transfer that cover the entire flow regime from bubbly flow 

to film/drop flow, as well as single-phase flows. Different types of turbulence models are 

considered, such as mixing length model and two equation k–ε models. Model error due to physical 

simplification and mathematical approximation on these applied models, correlations and 

assumptions is one of the main error sources that should be considered. This is same as the system 

codes and RANS methods with wall functions. 
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For the thermal-hydraulic simulations using these codes, the key local phenomena in near-

wall region are friction, turbulence and heat transfer. Respective correlations are applied for the 

simulation where characteristic lengths are introduced as one of the key parameters. The 

calculation of characteristic length is default executed using the local mesh size. Therefore, if users 

do not set the characteristic lengths by themselves, the mesh size they apply greatly affects the 

performance of the empirical correlations in the local near-wall cells. Here the mesh size is treated 

as one of the model parameters that determine whether the correlations are applied in their 

applicable ranges or not. This is one of the reasons why mesh size greatly affects the modeling and 

simulation results. Another major error source is also related to mesh size; here we call it “mesh 

error” to distinguish it with discretization error. The discretization error is proposed from the 

classic V&V point of view for the solving of PDEs, which assumes that when mesh size goes to 

zero the solution of PDEs converges. However, due to the correlation-based design in the 

simplified boundary-layer treatment, these CFD-like codes (e.g., GOTHIC) are not expected to 

converge when mesh size goes to zero due to very fine mesh may not satisfy the applicability of 

these empirical correlations. Taking GOTHIC as example, it applies finite volume technique with 

cell volume and surface porosities for complex geometries. The local instantaneous PDEs for mass, 

momentum and energy are time and space averaged to obtain the finite volume equations. Results 

from GOTHIC represent the averaged values of parameters over specified regions, not the exact 

value at the central points of the regions. Therefore, mesh error indicates the information loss of 

conservative and constitutive equations during the application of time and space averaging 

approaches. Other numerical errors in the system code due to iterative convergence, algorithm 

selection, coding error and finite arithmetic also exist in GOTHIC, but have less influence on the 

modeling and simulation compared to model error and mesh error. 

2.3. Data-driven Modeling Application on Fluid Dynamics 

Over the past decades, nuclear reactor thermal-hydraulics was developed successfully to 

meet most of the engineering practical requirements in nuclear reactor design and safety analysis. 

However, as discussed above, the difficulties in performing V&V of thermal-hydraulic codes and 

dealing with those main uncertainty/error sources with taking user effect into consideration still 

exist. This makes the development of nuclear reactor thermal-hydraulics become sluggish even 

though the body of knowledge and computer capability are greatly enlarged and improved. 
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Many contributions have been made on the development of data-driven approaches in the 

study of fluid dynamics, especially the data-driven turbulence closures to deal with the issues from 

model form uncertainty and knowledge lack of turbulence. Early in 2002, Milano used DNS results 

as HF data to train a Neural Network (NN) to replicate near-wall channel flows, but did not apply 

these NNs on forward models for turbulent flow prediction. [24] More recently in fluid dynamics, 

the rise of performance computing has led to the large HF data from DNS and well-resolved LES 

for the training and development of data-driven turbulence closures. RANS simulations, which 

provides significant savings in computational cost in comparison with DNS, have been used as LF 

model and coupled with these data-driven closures. Tracey and Duraisamy used NNs to predict 

the Reynolds stress anisotropy and source terms for turbulence transport equations. [25] Parish 

and Duraisamy introduced a multiplicative correction term for the turbulence transport equations 

using Gaussian Process Regression (GPR) with the uncertainty of this correction term quantified. 

[26] Zhang and Duraisamy also applied NNs to predict a correction factor for the turbulent 

production term in channel flow, which could affect the magnitude but not the anisotropy of the 

predicted Reynolds stress tensor. [27] Ling proposed the training of Random Forests (RFs) to 

predict the Reynolds stress anisotropy. [28] However, Ling and Templeton explored the capability 

of RFs and NNs in learning the invariance properties and concluded that RFs are limited in their 

ability to predict the full anisotropy tensor because they cannot easily enforce Galilean invariance 

for a tensor quantity. [29] So later Ling and Templeton used deep NNs with embedded invariance 

to predict the Reynolds stress anisotropy. [30] Different with those data-driven approaches above 

that directly predict Reynolds stress, Wang and Xiao proposed to apply RFs to predict the Reynolds 

stress discrepancy. [31] It should be noted that several well-selected physical features are used as 

the training input instead of physical coordinates in this approach. Another ML algorithm, Gene 

Expression Programming (GEP) was applied by Weatheritt and Sandberg to formulate the non-

linear constitutive stress-strain relationships for turbulence modeling. [32] Recently, Zhu and Dinh 

performed a data-driven approach to model turbulence Reynolds stress leveraging the potential of 

massive DNS data. [33] The approach is validated by a turbulence flow validation case: a parallel 

plane quasi-steady state turbulence flow case. These efforts mainly contributes on improving the 

RANS capability for turbulence modeling, not for the application of commercial codes with fixed 

model forms for system-level large-space thermal-hydraulics such as containment thermal-

hydraulics.  
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Most of these approaches focused on how to deal with model form uncertainty of RANS 

turbulence modeling without considering the numerical error due to discretization. Hanna and 

Dinh investigated the feasibility of a Coarse Grid CFD (CG-CFD) approach by utilizing ML 

algorithms to produce a surrogate model that predicts the CG-CFD local errors to correct the 

variables of interest. [34] This work focused on the correction of discretization error of CG-CFD 

without considering the model errors that may be introduced in CFD applications on thermal-

hydraulic analysis. According to a classification of machine learning frameworks for thermal fluid 

simulation [15], the CG-CFD approach belongs to Type V ML which does not have requirement 

for prior knowledge. Type V ML fully relies on ML algorithms to discover the underlying physics 

directly from data. 

2.4. Scope of This Work 

The significance of this work stems from the application of data-driven modeling approach 

based on the concept of TDMI. The work scope mainly focuses on three parts:  

2.4.1. Validation of Coarse-mesh CFD-like Codes 

All these data-driven approaches reviewed in Section 2.3 are not designed for CFD-like or 

coarse-mesh CFD codes. These efforts analyzed model error and mesh error separately with 

another fixed, the logic of which is impractical to the coarse-mesh methods where mesh size is 

treated as a model parameter and mesh convergence is not expected. To overcome this difficulty 

in the V&V and application of CFD-like codes, OMIS is developed to deal with these two error 

sources together, as shown in Figure 2. OMIS framework is considered as a Type V ML framework 

since it treats the physical models, coarse mesh sizes and numerical solvers as an integrated model, 

which can be considered as a surrogate of governing equations and closure correlations of LF code. 

The development of this integrated model does not need relevant prior knowledge, and purely 

depends on existing data. Besides, compared to current data-driven efforts, OMIS framework is 

successfully applied in thermal-hydraulic modeling and simulations, not only in adiabatic fluid 

dynamics where previous efforts were focused on.  

In some respects, OMIS is expected to provide a potential data-driven approach for the 

validation of these CFD-like codes in the system-level thermal-hydraulic modeling and 

simulations. As the response of trained data-driven model, simulation error in each cell is estimated 

according to the Physical Features (PFs) in each local cell. By introducing the concept of TDMI 
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and various PFs, the prediction of simulation error takes all the error sources into accounts and has 

a promising accuracy even for extrapolative conditions where validation data is not available. This 

scalability by exploring the local physics is discussed in following section.  

 

Figure 2. Review of Machine Learning Applications on Thermal-Hydraulic Modeling 

2.4.2. Development of A Data-driven Scale-invariant Approach  

Over the past few decades, many concepts of nuclear reactor have been proposed with 

different components, geometries and powers. The respective global physical conditions might be 

an “extrapolation” to previous simulations, which seems to bring large uncertainty into the 

demonstration simulations. The relevant thermal-hydraulic experiments with a wide range of scale 

and structures have to be designed for respective code development and validation, the data 

generated from previous simulations have to be abandoned in the corner. However, no matter how 

much the extrapolation of global physics is, local physics such as the interaction between liquid, 

vapor and heat structure may not change. This makes it possible that local physical parameters or 

variables in the local cells are similar even the global physical condition totally changes.  

Firstly we need to identify the definitions of global physics and local physics: the former 

one indicates the global or macroscopic state, observation and deduction of the simulation target 

condition, such as the dimension, geometry, structure, boundary condition and non-dimensional 

parameters that represent the underlying physics; while the latter one refers to the microscopic 

state, observation and deduction of the simulation target condition. For example, the global physics 

of turbulent flow can be characterized using the value of Re number and geometries. No matter 
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how Re number or geometry changes, the local physics is always turbulence if the Re number is 

big enough.  

According to the identification of global physics and local physics, four different physics 

coverage conditions are classified as Global Interpolation through Local Interpolation (GILI), 

Global Interpolation through Local Extrapolation (GILE), Global Extrapolation through Local 

Interpolation (GELI) and Global Extrapolation through Local Extrapolation (GELE). 

For instance, there are several cases for single-phase fully developed flow in a pipe of 

diameter D: the local physical conditions and the values of 𝑅𝑒𝐷  which represent the global 

physical conditions are listed in Table 1. Assume some of cases as existing data and others as 

target simulation, then four different physics coverage conditions are specified with both of global 

and local physics taken into consideration, as shown in Figure 3. GILI condition represents the 

situation where the both global and local physical conditions of target case (Case 4) are identified 

as an interpolation of existing cases (Case 3 and 5). In this situation, the physics of target case is 

globally and locally “covered” by existing cases, the model developed using the sufficient data 

from Case 3 and 5 is reliable to predict the condition of Case 4. However, in GILE condition, even 

if the global physical condition of target case (Case 2) is covered by existing cases (Case 1 and 3), 

the data from existing cases is not able to inform the prediction of target case since the local physics 

are totally different. As proved in reality, the models developed from experiments of laminar flow 

or turbulent flow are not applicable for the transition prediction. GELE condition has the same 

problem, the models developed from the experiments of laminar flow is not applicable for the 

turbulence prediction. In these two conditions, the existing data does not contain the instructive 

information of the target so that it is useless no matter how much the data is used for model 

development. 

Table 1. Example of Different Global and Local Physical Conditions 

Case Global Physical Condition Local Physics 

1 𝑅𝑒𝐷 = 102 Laminar Flow 

2 𝑅𝑒𝐷 = 2.5 × 103 Laminar–Turbulent Transition 

3 𝑅𝑒𝐷 = 1 × 104 

Turbulent Flow 4 𝑅𝑒𝐷 = 2 × 104 

5 𝑅𝑒𝐷 = 3 × 104 
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Figure 3. Illustration of Physics Coverage Condition Considering Global and Local Physics 

GELI condition indicates the situation where the global physical condition of target case 

(Case 5) is identified as an extrapolation of existing cases (Case 3 and 4) but the local physics are 

similar, turbulent flow. The values of some representative parameters (e.g., local velocity 

gradients) are even interpolative in the existing cases. Unlike in GILE or GELE conditions, the 

local similarity in GELI condition provides the feasibility to take great benefits from the existing 

data to estimate the target case. Instead of endlessly evaluating the applicable ranges of models 

and scaling uncertainty, exploring the similarity of local physics opens another door to overcome 

the problems in global extrapolations. Based on the idea of TDMI, the specific physical models, 

local mesh sizes and numerical solvers are treated as an integrated model, where the interactions 

among different physical or numerical models are also taken into consideration. Data obtained 

from this integrated model can be used to construct a library that identifies and stores the local 

similarities in different physical conditions. This library is self-improvable and automatically 

updated as new qualified data is available. Once the library is built, ML algorithms are applied to 

find natural patterns in data that generate insight and help make better predictions.  

Currently, the most comfortable physics coverage condition for thermal-hydraulic 

modeling or simulation is GILI condition where the existing data or experience has the capability 

to estimate the target case. And GELI condition has this potential capability when appropriate data 

and ML algorithm are coupled. The extrapolation of global physics indicates different global 
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physical conditions such as a set of characteristic non-dimensional parameters, or different 

IC/BCs, or different geometries/structures, or dimensions. The interpolation of local physics 

implies two definitions:  

1. From the perspective of traditional knowledge on physics: the existing cases (no matter 

experimental or numerical tests) and target case are designed for the local physics with similar 

length scales and time scales, such as the turbulence example discussed above; 

2. From the perspective of data characteristics: the underlying local physics of these cases 

is assumed to be represented by a set of Physical Features (PFs), and the PF data of target case is 

mostly covered or similar to the PF data of existing cases. This similarity is depending on the 

identification of PFs, data quality and quantity. 

Targeting on the “GELI” condition, OMIS framework is developed as a TDMI approach 

that deals with data, physical model and coarse-mesh simulation in an integrated manner using 

ML algorithms. By concentrating on the similarity of local physics, OMIS framework has a 

potential scalability to the globally extrapolative conditions. The application of ML algorithms 

realizes the data-driven concept of OMIS by using computational methods to "learn" information 

directly from data without assuming a predetermined equation as a model. These algorithms 

adaptively improve their performance as the size of training data increases. The key outcomes of 

OMIS framework are (1) quantitatively measuring the PF similarity of existing data and target 

data, and (2) identifying the relationship between these local PFs and local simulation error for 

future predictions. After all, OMIS is promising to develop a data-driven scale-invariant approach 

to deal with scaling issues and provide evidence for the generation of validation data. 

2.4.3. Supplement to Evaluation Model Development and Assessment Process 

As reviewed in Section 1.2, Evaluation Model Development and Assessment Process 

(EMDAP) is too high-level and heuristic to implement even if it has formal and explicit 

descriptions for the concepts, definitions and processes. Besides, the acceptance criteria were not 

clearly defined. Same as CSAU, the system analysis and scaling analysis in EMDAP are highly 

heuristic and difficult to implement, and the mesh effect on code/model scalability was not fully 

considered. Especially in EMDAP Step 19: assess scalability of integrated calculations and data 

for distortions, necessary techniques are deficient on data assimilation or scalability assessment. 

By treating mesh error and model error together and introducing machine learning algorithms to 
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explore the local physics, OMIS framework has the potential to bridge the scale gap and work as 

a supplement to the implementation of EMDAP considering the industry requirements on 

validation of RISMC models. Mode details are discussed in Chapter 7. 

2.5. Chapter Summary 

This chapter introduces the technical background of OMIS framework. In Section 2.2, 

uncertainty and error sources in system-level thermal-hydraulic modeling and simulation are 

discussed from traditional Verification and Validation (V&V) perspective, followed by the 

overview of scaling issues and user effects in thermal-hydraulic applications. It implies that the 

traditional V&V frameworks are not applicable to these coarse-mesh CFD-like codes, whose mesh 

error and model error are tightly connected since mesh size is treated as one of the key model 

parameters. By performing a brief discussion on the error analysis of these codes, it is found that 

mesh convergence is not available due to the integral form of conservation equations. Therefore, 

a smart guide is urgently needed to provide advice on the optimal selections of coarse mesh size 

and models before the application of these codes.  

Section 2.3 reviews the data-driven modeling applications in fluid dynamics. Most of these 

approaches focused on how to deal with model form uncertainty of RANS turbulence modeling 

without considering the numerical error due to discretization. All these data-driven approaches are 

not designed for CFD-like or coarse-mesh CFD codes. These efforts analyzed model error and 

mesh error separately with another fixed, the logic of which is impractical to the coarse-mesh 

methods where mesh size is treated as a model parameter and mesh convergence is not expected.  

Section 2.4 describes the scope of this work from three respects: (1) provide a potential 

data-driven approach for the validation of these CFD-like codes in the system-level thermal-

hydraulic modeling and simulations; (2) develop a data-driven scale-invariant approach to deal 

with scaling issues and provide evidence for the generation of validation data; (3) work as a 

supplement to the implementation of EMDAP. 
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CHAPTER 3. REVIEW OF COARSE-MESH SIMULATION TOOL: GOTHIC 

3.1. Introduction 

This chapter reviews the Low-Fidelity (LF) simulation tool, GOTHIC, which is a coarse-

mesh CFD-like software initially developed for containment thermal-hydraulic analysis. The 

structure on thermal-hydraulic modeling is described in Section 3.2 including conservation 

equations, source terms, and closure models involved. The relationship between mesh and key 

closure models are discussed. Section 3.3 describes a qualitative assessment of thermal-hydraulic 

simulation using GOTHIC including mesh and model sensitivity study. 

GOTHIC allows users to build models for solving complex thermal hydraulics problems 

involving multiphase flow of steam, water drops, liquid water and non-condensing gases with 

interface heat and mass transport. Fluid regions can be represented by lumped parameter nodes, 

1D, 2D and 3D grids. Physical models are included for interphase drag and heat and mass transfer 

to model boiling, evaporation and condensation in a wide range of flow regimes including single 

phase, bubbly and film/drop flows. Each phase is tracked with its own set of mass, energy and 

momentum balance equations to allow modeling thermal nonequilibrium, phase slip and counter 

current flows. The vapor phase is made up of steam and any number of non-condensing gas 

components. [3] 

As a coarse-mesh thermal-hydraulic analysis software for modeling and simulation of 

containment processes, GOTHIC code has been evaluated, validated, and applied in deterministic 

safety analysis. In particular, GOTHIC code has been successfully employed for analysis of 

containment thermal-hydraulic during loss of coolant accidents (LOCAs). [5]  

In the previous study, a demonstration GOTHIC model has been developed for BWR Mark 

I containment and successfully applied to investigate the performance of reactor safety system and 

containment venting processes during SBO accident scenario. [4,35,36] GOTHIC has the 

capability to simulate the dynamical performance of reactor systems needed for analysis of reactor 

depressurization and containment venting. It allows an effective description and integration of 

plant components in 0-D (i.e., lumped parameter), 1-D (e.g., piping network), and 3-D 

(recirculation flow). This advanced capability in GOTHIC allows analysis of complex thermal-

hydraulic scenarios involving 3-D flow patterns (e.g., in containment) and 1-D pipe network. 
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3.2. GOTHIC Structure on Thermal-Hydraulic Modeling and Simulation 

GOTHIC structure on thermal-hydraulic modeling and simulation contains conservation 

equations, source terms and closure models as shown in Figure 4. The conservation equations build 

the physics basis for the multiphase thermal-hydraulic analysis. The source terms in these averaged 

conservation equations respectively represent the mass/momentum/energy sources from external 

environment (thermal boundaries, plant equipment or chemical reactions) or due to phase change. 

In order to solve those source terms, several closure models are introduced and coupled. 

 

Figure 4. GOTHIC Structure on Thermal-Hydraulic Modeling and Simulation 

3.2.1. Conservation Equations 

The conservation equations are written in integral form because this form is closely related 

to the finite volume numerical method used to solve the equations. Mass, momentum and energy 

conservation equations are derived from local instantaneous formulation of differential balance 

equations using time and volume averaging methods, as shown in Equation (1), (2) and (3). Mass 

conservation is expressed as below, 
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𝜕

𝜕𝑡
∫ 𝜃𝛼𝜑𝜌𝜑𝜁𝑑𝑉

𝑉

 = − ∫ Ψ𝛼𝜑𝜌𝜑𝜁𝑢𝜑⃗⃗⃗⃗  ⃗ ∙ 𝑛⃗ 𝑑𝐴

𝐴

 + ∫ Ψ𝛼𝜑𝜌𝜑𝐷𝜑
𝑐 ∇⃗⃗ (

𝜌𝜑𝜁

𝜌𝜑
) ∙ 𝑛⃗ 𝑑𝐴

𝐴𝑓

 

(1) 

Storage Convection Diffusion 

 + ∫ 𝑠𝜑𝜁
𝑐 𝑑𝐴

𝐴𝑤

 +𝑆𝜑𝜁
𝑐  +𝐸𝜑𝜁

𝑐  +𝐶𝜑𝜁
𝑐  

 
Boundary (Wall)  

Source 

Interface 

Source 

Equipment 

Source 

Combustion 

Source 

The subscript φ refers to the phase and takes on the values v (vapor), l (liquid). The 

subscript ζ refers to a component of the vapor (ζ = s for the steam component, ζ= n for a single 

component of the noncondensing gas mixture, and ζ = g for the noncondensing gas mixture). 

GOTHIC applies porous media approach, θ is the volume porosity and is Ψ the area porosity 

factor. The porosity factors range from 0 to 1 with a value of 1 for a completely unobstructed 

volume or area. α  is the volume fraction, ρ is the density, u is the velocity, is outward normal to 

the surface 𝑑𝐴. 𝐴𝑓 is that portion of the total surface area in contact with adjacent fluid volumes.  

𝐷𝑐 is the mass diffusion coefficient, including turbulence effects only. 𝑠𝑐 is the mass source per 

unit area generated at, or passing through, bounding wall 𝐴𝑤 . 𝑆𝑐  is the mass source due to 

interaction with other phases (e.g., evaporation, condensation, drop entrainment deposition), 𝐸𝑐 is 

the mass source from engineered safety equipment and 𝐶𝑐  is the mass source from hydrogen 

combustion. Momentum conservation is expressed as below, 

 
𝜕

𝜕𝑡
∫ 𝜃𝛼𝜑𝜌𝜑𝑢𝜑⃗⃗⃗⃗  ⃗𝑑𝑉

𝑉

 = − ∫ Ψ𝛼𝜑𝜌𝜑𝑢𝜑⃗⃗⃗⃗  ⃗(𝑢𝜑⃗⃗⃗⃗  ⃗ ∙ 𝑛⃗ )𝑑𝐴

𝐴

 + ∫ Ψ𝛼𝜑𝜎𝜑 ∙ 𝑛⃗ 𝑑𝐴

𝐴𝑓

 + ∫ 𝜃𝑔 𝛼𝜑𝜌𝜑𝑑𝑉

𝑉

 

(2) 
Storage Convection Surface Stress Body Force 

 + ∫ 𝑠𝜑
𝑚⃗⃗ ⃗⃗  ⃗𝑑𝐴

𝐴𝑤

 +𝑆𝜑
𝑚⃗⃗ ⃗⃗  ⃗ +𝐸𝜑

𝑚⃗⃗ ⃗⃗⃗⃗  

 Boundary (Wall)  Source Interface Source Equipment Source 

𝜎  includes the static pressure and the viscous and Reynolds stress terms, 𝑔   is the 

gravitational acceleration, 𝑠𝜑
𝑚⃗⃗⃗⃗  ⃗ is the momentum source per unit wall area, 𝑆𝜑

𝑚⃗⃗ ⃗⃗  ⃗ is the momentum 
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source due to interphase exchange (drag and phase transition) and 𝐸𝜑
𝑚⃗⃗⃗⃗⃗⃗  is the momentum source 

from equipment. All components of the vapor are assumed to move at the same velocity. The 

density in the vapor momentum equation includes the steam and gas component densities, (each 

at their own partial pressure). Energy conservation is expressed as below, 

 
𝜕

𝜕𝑡
∫ 𝜃𝛼𝜑(𝜌𝜑(ℎ + 𝑘𝑒)𝜑 − 𝑃)𝑑𝑉

𝑉

 = − ∫ Ψ𝛼𝜑𝜌𝜑(ℎ + 𝑘𝑒)𝜑𝑢𝜑⃗⃗⃗⃗  ⃗ ∙ 𝑛⃗ 𝑑𝐴

𝐴

− ∫ 𝑃
𝜕

𝜕𝑡
(𝜃𝛼𝜑)𝑑𝑉

𝑉

 

(3) 

 Storage Convection and Work 

 

+ ∫ Ψ𝛼𝜑𝜌𝜑𝑐𝑝𝜑𝐷𝜑
𝑒 ∇⃗⃗ 𝑇𝜑 ∙ 𝑛⃗ 𝑑𝐴

𝐴𝑓

 +∑ ∫ Ψ𝛼𝜑𝐷𝜑
𝑐 ∇⃗⃗ (

𝜌𝜑𝜁

𝜌𝜑
)ℎ𝜑𝜁 ∙ 𝑛⃗ 𝑑𝐴

𝐴𝑓𝜁

 

 Thermal Diffusion Mass Diffusion 

 

+ ∫ 𝑠𝜑
𝑒𝑑𝐴

𝐴𝑤

 +𝑆𝜑
𝑒  +𝐸𝜑

𝑒  +𝐶𝜑
𝑒  

 Boundary (Wall)  

Source 

Interface 

Source 

Equipment 

Source 

Combustion 

Source 

where h is enthalpy, ke is the kinetic energy, P is the static pressure, 𝐷𝜑
𝑒  is the thermal 

diffusion coefficient, 𝑠𝜑
𝑒  is the energy source per unit wall area, 𝑆𝜑

𝑒  is the interphase energy source, 

𝐸𝜑
𝑒  is the equipment energy source and 𝐸𝜑

𝑒  is the energy source from hydrogen combustion. 

Kinetic energy is included or neglected by user selection, and all other energy forms not explicitly 

represented above are neglected. Viscous dissipation is also neglected. The kinetic energy is 

defined as 𝑘𝑒𝜑 =
𝑢𝜑

2

2
. All components of the vapor are assumed to be at the same temperature. 

The enthalpy in the vapor energy is the mixture energy of the steam and noncondensing gas 

mixture. The energy transported with the mass through mass diffusion is included only for the 

vapor. 

3.2.2. Source Terms 

I. Boundary (Wall) Source Terms 

The boundary (wall) source terms in the conservation equations above include convection 

and radiation heat transfer, condensation and boiling at the wall (as mass and energy sources) and 
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friction and orifice drag (as momentum sources). The boundary mass source terms provide mass 

sources and sinks due to phase change at a non-fluid surface. For example, condensation heat 

transfer on conductors results in a mass sink for the steam and a mass source for the liquid. The 

boundary energy source terms include convection and radiation heat transfer from walls and the 

energy associated with any surface mass source terms. It is assumed that all wall heat transfer is 

between the walls and the liquid and vapor phases. For each conductor, the energy source depends 

on the particular heat transfer option selected by the user. The logic for selecting the heat transfer 

coefficients for heat transfer between the conductor surface and the fluid in GOTHIC is shown in 

Figure 5. 𝛼𝑙−𝑙𝑖𝑚 is the limit value for liquid fraction to determine whether the fluid in the cell is 

vapor only or two-phase fluid. 𝑇𝑠𝑎𝑡(𝑃𝑣𝑠) is the saturation temperature under the steam pressure. 

𝑇𝑤 is the wall temperature and 𝑇𝑙 is the liquid temperature. The heat transfer correlations built into 

GOTHIC that are accessed with this model apply to the heat transfer at the conductor surface, 

covering the portion of the boiling curve which spans single phase heat transfer to pre-CHF 

(Critical Heat Flux) heat transfer. 

 

Figure 5. Heat Transfer Selection Logic in GOTHIC 

• Wall Convection Heat Transfer Model 

The boundary source terms for the fluid energy equations include convection and radiation 

heat transfer from walls and the energy associated with any surface mass source terms. The 

convection energy source terms for the conductor surfaces are, 

 𝑄𝑤𝑙
= 𝜆𝑡𝜆𝑤𝑙

𝐴𝑐𝑛𝐻𝑐𝑜𝑛𝑣𝑙
(𝑇𝑤 − 𝑇𝑙) (4) 
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And 

 𝑄𝑤𝑣
= 𝜆𝑡𝜆𝑤𝑣

𝐴𝑐𝑛𝐻𝑐𝑜𝑛𝑣𝑣
Δ𝑇𝑐𝑜𝑛𝑣𝑣

 (5) 

where 𝑄𝑤𝑣
 and 𝑄𝑤𝑙

 represent the heat flux from the wall to the vapor and liquid. 𝐴𝑐𝑛 is the 

conductor surface area, 𝜆𝑡 is a user-defined multiplier on the heat transfer coefficient with a default 

value of 1.0. 𝜆𝑡  is input as a forcing function. 𝜆𝑤  is the user-defined heat transfer option for 

different phases. 𝜆𝑤𝑙
= 1 means only liquid is considered for heat transfer, 𝜆𝑤𝑙

= 0 means only 

vapor is considered for heat transfer. 𝜆𝑤𝑣
= 1 − 𝜆𝑤𝑙

. If both of liquid and vapor are considered for 

heat transfer then the portion of the conductor surface covered by liquid is assumed to be given by 

the fraction indicated in following equation with lower and upper limits on the liquid volume 

fraction specified by the user. Δ𝑇𝑐𝑜𝑛𝑣𝑣
 represents the temperature difference for convection 

between the surface and the vapor. The convection heat transfer coefficient may be specified by 

the user or it is calculated from correlations for natural and forced convection as, 

 𝐻𝑐𝑜𝑛𝑣 = 𝑀𝑎𝑥 [

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐶𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛, 𝐻𝑛𝑐

𝐹𝑜𝑟𝑐𝑒𝑑 𝐶𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛, 𝐻𝑓𝑐

𝐻𝑐𝑜𝑛𝑣𝑚𝑖𝑛

 (6) 

The user may supply a minimum value for the convection heat transfer coefficient as 

𝐻𝑐𝑜𝑛𝑣𝑚𝑖𝑛
, otherwise the default lower limit for convective heat transfer is based on simple 

conduction through stagnant fluid and is calculated as 𝐻𝑐𝑜𝑛𝑣𝑚𝑖𝑛
=

𝑘

𝐿𝑐
, where k is the fluid thermal 

conductivity and 𝐿𝑐 is the user specifiable effective conduction length. The default value for 𝐿𝑐 is 

𝐷ℎ

8
 where 𝐷ℎ is the cell hydraulic diameter. There are several correlations available in GOTHIC to 

define a convection heat transfer coefficient on the surface of a thermal conductor, which is defined 

as, 

 𝐻𝑛𝑐 =
𝑘

𝑙
𝐶𝑓(𝐺𝑟, 𝑃𝑟) (7) 

 𝐻𝑓𝑐 =
𝑘

𝑙
𝐶𝑅𝑒𝑚𝑃𝑟𝑛 (8) 

where C, m and n are constants. The local heat transfer coefficient is calculated using 

respective correlations for natural convection and forced convection with local characteristic 

length 𝑙, 𝐺𝑟 and 𝑃𝑟, or 𝑅𝑒 and 𝑃𝑟. The local characteristic length for all of the above correlations 
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is the cell hydraulic diameter 𝐷ℎ, unless the user provides a specific value. The calculation of local 

𝑅𝑒 and 𝐺𝑟 are based on the same characteristic length. Figure 6 shows the schematic of how 

GOTHIC calculates the boundary energy source terms for convection heat transfer. 

 

Figure 6. Schematic of the Calculation of Boundary Energy Source Terms 

• Wall Drag Force Model 

The boundary momentum source includes friction and form drag due to walls, orifices and 

obstructions. Drag force on each phase contains drag from orifices/obstructions and wall friction, 

the drag force coefficients are calculated using experience correlations for different conditions 

(laminar and turbulence). The total drag force on phase 𝜙 is, 

 𝐷𝜙 = 𝐷𝜙
𝑜 + 𝐷𝜙

𝑓
 (9) 

where the subscript 𝜙 refers to the phase and takes on the values v (vapor), l (liquid). 𝐷𝜙
𝑜  

is the drag from orifices or obstructions and 𝐷𝜙
𝑓
 is the drag force from wall friction. The user 

supplies a drag coefficient for each flow connection. The total orifice or obstruction drag force on 

each phase is assumed to be proportional to the area fraction of the phase, giving 

 𝐷𝜙
𝑜 = 𝐴𝛼𝜙

𝐾

2
𝜌𝜙𝑢𝜙|𝑢𝜙| (10) 

where K is the user-specified drag coefficient, A is the free area of the flow connection and 

uϕ is the velocity component normal to A. Wall friction drag is calculated for the vapor and liquid 

phases only and for co-flow is given by 
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 𝐷𝜙
𝑓

= 𝜆𝑓𝜙
𝜆𝜙𝑜

2𝐴
𝑙𝑤 ∙ 𝑓(𝑅𝑒𝐺𝜑

)

2𝐷ℎ
𝜌𝜙𝑢𝜙|𝑢𝜙𝜆𝑒𝑥𝑝| (11) 

where 𝑙𝑤 is the wall length and 𝐷ℎ is the cell hydraulic diameter; 𝜆𝑓𝜙
 represents a ramp 

functions that puts all of the drag on the liquid phase until the flow is in the single-phase vapor 

regime; 𝜆𝑒𝑥𝑝 is an expansion factor that approximates the increase in frictional drag due to the 

expansion of the fluid as the pressure falls along the length of the duct; The phase dependent 

multiplier 𝜆𝜙𝑜
2
 is set to 1 for the vapor phase and is defined for the liquid phase by the Fridel 

correlation [37]. The expression 𝑓(𝑅𝑒𝐺𝜑
) is the friction factor that is dependent on the local 

Reynolds number of the phase. 

 𝜆𝑙𝑜
2 = 𝐸 +

3.24𝐹𝐻

𝐹𝑟0.045𝑊𝑒0.035
 (12) 

 𝐸 = (1 − 𝑥𝑓)
2
+ (𝑥𝑓)

2 𝜌𝑙𝑓(𝑅𝑒𝐺𝜑
)

𝜌𝑣𝑓(𝑅𝑒𝐺𝜑
)
 (13) 

 𝐹 = (𝑥𝑓)
0.78

(1 − 𝑥𝑓)
0.242

 (14) 

 𝐻 = (
𝜌𝑙

𝜌𝑣
)
0.91

(
𝜇𝑣

𝜇𝑙
)
0.19

(1 −
𝜇𝑣

𝜇𝑙
)
0.7

 (15) 

 𝐹𝑟 =
𝐺2

𝑔𝐷ℎ𝜌𝑡𝑝
2  (16) 

 𝑊𝑒 =
𝐺2𝐷ℎ

𝜌𝑡𝑝𝜎
 (17) 

 𝑥𝑓 =
𝛼𝑣𝜌𝑣𝑢𝑣

𝐺
 (18) 

 ρtp = (
xf

ρv
+

1 − xf

ρl
)
−1

 (19) 

 𝑓(𝑅𝑒𝐺𝜑
) = max{

𝑓(𝑅𝑒𝐺𝜑
)𝑙𝑎𝑚

𝑓(𝑅𝑒𝐺𝜑
)𝑡𝑢𝑟𝑏

 (20) 

 𝑓(𝑅𝑒𝐺𝜑
)𝑙𝑎𝑚 =

64𝜆𝐺

𝑅𝑒𝐺𝜑

 (21) 
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1

√𝑓(𝑅𝑒𝐺𝜑
)𝑡𝑢𝑟𝑏

= −2log [

𝜀
𝐷ℎ

𝜆𝐺

3.7
−

4.518𝜆𝐺

𝑅𝑒𝐺𝜑

𝑙𝑜𝑔(
6.9𝜆𝐺

𝑅𝑒𝐺𝜑

+ (

𝜀
𝐷ℎ

𝜆𝐺

3.7
)

1.11

)] (22) 

where 𝜀 is the wall roughness, 𝜆𝐺 is the geometry adjustment factor that accounts for non-

circular geometry effects and is given by the following equation 𝜆𝐺 =
𝐺𝐿

64
. 𝐺𝐿 is the laminar friction 

geometry factor and has a default value of 64 for circular pipes. The Reynolds number is calculated 

as though the total mass flux consists of only that phase. 

 𝑅𝑒𝐺𝜑
=

𝐺𝐷ℎ

𝜇𝜙
 (23) 

 𝐺 = 𝛼𝑙𝜌𝑙𝑢𝑙 + 𝛼𝑣𝜌𝑣𝑢𝑣 (24) 

Here the correlations of 𝐷𝜙
𝑓
 and 𝑓(𝑅𝑒𝐺𝜑

) implies that the control volume is considered as 

an equivalent pipe with inside diameter as 𝐷ℎ and height as l. Wall length 𝑙𝑤 can be considered as 

the mesh size of the local cell along the friction direction. The calculation of 𝐷ℎ is different for 

different local mesh sizes and wall conditions. 𝐷ℎ works as a parameter to the wall friction model. 

Figure 7 shows the schematic of how GOTHIC calculates the boundary energy source terms for 

convection heat transfer. 

 

Figure 7. Schematic of the Calculation of Boundary Momentum Source Terms 
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II. Stress and Diffusion Terms 

• Turbulence Model 

The stress tensor 𝜎𝜙 in the surface stress term of the momentum equation, Equation (2), 

includes the effects of static pressure, viscous shear and turbulent diffusion of momentum. The 

components of the mass and energy diffusion that are due to turbulence are closely related to that 

for turbulent momentum diffusion and, therefore, are also discussed in this section. Mass diffusion 

coefficient 𝐷𝜑
𝑐  in Equation (1), and in the energy diffusion coefficient 𝐷𝜑

𝑒  in Equation (3) can be 

obtained by using turbulence models in GOTHIC. 𝜎𝜙  includes the effects of static pressure, 

viscous shear and turbulent diffusion of momentum.  

 𝜎𝜙 = 𝜎𝑖𝑗 = −𝑃𝛿𝑖𝑗 + (𝜇 + 𝜇𝑇)(𝑢̅𝑖,𝑗 + 𝑢̅𝑗,𝑖) −
2

3
𝛿𝑖𝑗𝜌𝑘 (25) 

where P is static pressure, 𝛿𝑖𝑗 is the special tensor, 𝜇 is molecular viscosity, 𝜇𝑇 is turbulent 

viscosity, 𝑢̅𝑖,𝑗 =
𝜕𝑢𝑖

𝜕𝑥𝑗
, 𝑢̅𝑖 is the time-averaged velocity in the 𝑥𝑖 direction, 𝑘 is the turbulent kinetic 

energy, 𝑘 =
1

2
𝑢𝑖

′𝑢𝑖
′̅̅ ̅̅ ̅̅ . The mass diffusion coefficient and thermal diffusion coefficient include two 

parts: molecular diffusivity and turbulent diffusivity: 

 𝐷𝑐 = 𝐷𝑐,𝑚 + 𝐷𝑐,𝑇 (26) 

 𝐷𝑒 = 𝐷𝑒,𝑚 + 𝐷𝑒,𝑇 (27) 

The molecular diffusivity is determined by the property of fluid, while the mass and energy 

turbulent diffusivity are respectively defined as the following equations. 

 
𝐷𝑐,𝑇 =

𝜇𝑇

𝜌𝑆𝑐𝑇
 (28) 

 
𝐷𝑒,𝑇 =

𝜇𝑇

𝜌𝑃𝑟𝑇
 (29) 

Experimental evidence indicates that the turbulent Schmidt 𝑆𝑐𝑇  and Prandtl number 

𝑃𝑟𝑇 vary only slightly within a flow field or from flow to flow and can usually be treated as 

constants. In GOTHIC, the recommended value for 𝑆𝑐𝑇  and 𝑃𝑟𝑇  is 1. Therefore, turbulence 

effects in the local control volumes can be modeled by obtaining expressions for 𝜇𝑇 and 𝑘. Two 

types of turbulence models are considered in GOTHIC, mixing length model [38] and two equation 
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k–ε models [39]. The Prandtl mixing length model was developed for unidirectional flow over a 

flat plate in the x direction. Because of these simplistic origins, the model provides reasonable 

results for situations involving uniform geometries and flow fields. The model is dependent on a 

user-specified mixing length which is highly problem dependent. However, the model is easy to 

use and does not require the solution of additional transport equations to obtain the essential 

turbulent parameters noted in the preceding section. The shortcomings of the mixing length model 

have led to development of the two-equation k–e model which solves partial differential equations 

that model the transport of effective parameters for calculating local turbulence, these being the 

velocity scale and length scale. Although this model solves transport equations to get the spatial 

and temporal distribution of the turbulent velocity and length scale, it still relies on empirically 

determined coefficients to close the model. Therefore, the model is only strictly reliable within the 

range of problems for which the empirical coefficients have been verified. The eddy viscosity is 

given in terms of the kinetic energy and the dissipation by 

 𝜇𝑇 = 𝐶𝜇𝜌
𝑘2

𝜀
 (30) 

• Near-wall Treatment in GOTHIC 

For computational cells adjacent to walls, the turbulence parameters are obtained using an 

approach using the logarithmic law of the wall which gives the near wall velocity profile as, [40]   

 𝑈 =
𝑈𝑓

𝐾
ln (

𝐸𝑦𝜌𝑈𝑓

𝜇
) (31) 

where U is the velocity parallel to the wall at a distance y from the wall, K is the von 

Karman constant (𝐾 ≈ 0.4) and E is a roughness parameter (𝐸 ≈ 9.0). 𝑈𝑓 is the friction velocity 

that is defined as, 

 𝑈𝑓 =
𝜎𝑤

𝜇
 (32) 

where 𝜎𝑤 is the wall shear stress. Equation (31) is used for the calculation of 𝑈𝑓 where U 

is set as the cell center velocity and y as the distance for cell center to wall. In the near wall region, 

it is assumed the turbulent shear stress is equal to the wall stress and that the production and 

destruction of turbulence are in equilibrium. Under this condition, 
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 𝑘𝑤 =
𝑈𝑓

√𝐶𝜇

 (33) 

 𝜀𝑤 =
𝑈𝑓

3

𝐾𝑦
 (34) 

where y, the distance to the wall, is assumed to be proportional to the hydraulic diameter 

as, 

 𝑦 =
𝐷ℎ

8
 (35) 

This gives the correct wall to cell center distance for a rectangular cell with a wall on one 

side. The kinetic energy and turbulent dissipation for cells adjacent to walls are defined as, 

 𝑘 = 𝑘𝑤
𝛾𝑘𝑓

1−𝛾
 (36) 

 𝜀 = 𝜀𝑤
𝛾𝜀𝑓

1−𝛾 (37) 

where 𝑘𝑓  and 𝜀𝑓  are the turbulence parameters calculated for a free cell without wall 

connected. The transition parameter 𝛾  is given by, 

 𝛾 = 𝑀𝑖𝑛 [
1

𝑀𝑎𝑥 (0,
𝑤

𝑦
− 1) (38) 

where w is the width of the cell, as shown in Figure 8. This forces the turbulence parameters 

to the wall values if y is less than one-half the cell width and relaxes them to the free mesh values 

as y becomes greater than the cell width. 

 

Figure 8. Calculation of Wall Distance in GOTHIC 

Figure 9 summarizes how GOTHIC calculates the stress and diffusion terms to close the 

conservation equations by using two-equation k–ε model. For free cells without walls connected, 
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the turbulence model is directly applied to solve k and ε to obtain 𝜇𝑇. For the cells adjacent to 

walls, k and ε are respectively divided into two parts, one part is calculated as the free cell 

condition, another part is calculated based on the friction velocity 𝑈𝑓, the distance to the wall y 

and local cell width w. The values of y and w are related to the local mesh size, as shown in Figure 

8. The friction velocity 𝑈𝑓 is calculated based on the velocity in the cell center parallel to the wall. 

 

Figure 9. Schematic of Calculation of Stress and Diffusion Terms in GOTHIC 

III. Other Source Terms 

The interface source terms include the mass, energy and momentum transfer from one 

phase to another due to vaporization or condensation. The source terms for phase transition are 

obtained by mass and energy balances for the interfaces. It is assumed that no mass or energy is 

stored at the interface. The selection of interfacial heat transfer coefficients, drag coefficients and 

areas greatly depends on the geometry of the flow. While many of flow regime maps are useful 

within the range of the data for which they were developed, they cannot be generally applied to all 

two-phase flow problems. The accurate prediction of exactly which flow regime can be expected 

under a given set of flow conditions is beyond the current understanding of two-phase flow. 

Furthermore, the flow regime selection must be applicable to the discrete representation of the 

flow field imposed by the grid of computational volumes. With this in mind, the physical basis of 

existing flow regime maps was used to develop a widely applicable and yet simple flow regime 

map for use in GOTHIC. For each computational cell in a model, the flow regime must be decided 
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upon before correlations for mass, energy and momentum transfer can be applied. The flow regime 

is determined using only information for the cell and its immediate neighbors. Different flow 

regime maps are provided in GOTHIC for interface heat, mass and momentum transfer: Vertical 

flow regimes, horizontal flow regimes, lumped parameter flow regimes, junction flow regimes. 

Equipment source terms provide the mass/energy/momentum specification form engineered safety 

equipment, such as spray, pump/fan, heat exchanger, cooler/heater. Combustion source terms 

introduce the inputs from hydrogen combustion. [3] 

3.2.3. Relationship between Mesh and Key Closure Models 

According to the reviews on these three models (wall friction, convection heat transfer and 

turbulence model), the local mesh size directly influences the performance of empirical 

correlations applied. Figure 10 shows the relationship between mesh size and these models. 

Friction model provides wall friction drag force to momentum conservation equation, which 

provides velocity in the cell adjacent to the wall to turbulence model to calculate the kinetic energy 

and turbulent dissipation. All these models require the information relevant to mesh size: hydraulic 

diameter, wall length or the distance to the wall. The calculation of these parameters is based on 

the mesh size of the local cell. However, there are different wall or flow conditions for the wall 

friction where the calculation of cell hydraulic diameter should apply different formulas. In the 

turbulence modeling, the distance to the wall and the cell width determine whether the turbulent 

parameters are more close to the ones in free cell or the ones in near-wall region. The relationship 

among the length, width and height of local cell also should be taken into consideration. 

 

Figure 10. Relationship between Mesh size and Closure Models 
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3.3. Qualitative Assessment of Thermal-Hydraulic Simulation using GOTHIC 

As discussed before, the main error sources when using GOTHIC for system-level thermal-

hydraulic simulation include model error due to physical simplification and mathematical 

approximation, mesh error due to the information loss in applying averaging methods on 

balance/constitutive equations, and other numerical errors. All these error sources lead to not only 

the error for single phenomena simulation, but also the error propagation then further to the 

simulation error for system scenario simulation. In this section, qualitative assessment of thermal-

hydraulic modeling and simulation using GOTHIC is performed based on several case tests for 

system-level thermal hydraulics including mesh and model sensitivity study. 

3.3.1. Natural convection with Heat Source in A Cavity 

Natural convection flow and heat transfer in a fluid layer with a volumetric heat source are 

of interest in certain geophysical, astrophysical, and technological problems. Here the natural 

convection study with volumetric heat in a horizontal fluid (water) layer was performed using 

GOTHIC. The cubic cavity has the boundary condition: a rigid and insulated bottom boundary, a 

cold upper boundary (20 oC) and periodic boundary at each side. The length of the cubic is 2 inch 

and the volumetric heat generated with the desired value of Rayleigh number (9.3×107). The 

standard two-equation k–ε turbulence model was applied for this case.  As shown in Figure 11, 

different mesh sizes were used for the GOTHIC 2D model: Δx/H = Δz/H = 0.1 for 10*10 node, 

Δx/H = Δz/H = 0.05 for 20*20 node, Δx/H = Δz/H = 0.033 for 30*30 node, Δx/H = Δz/H = 0.025 

for 40*40 node, Δx/H = Δz/H = 0.02 for 50*50 node, Δx/H = Δz/H = 0.01 for 100*100 node. 

 

Figure 11. The Illustration of 2D Model for the GOTHIC Simulation of Natural Convection 
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After quasi-steady state was reached, the non-dimensional temperature profile 𝑇∗ =

2𝑘(𝑇−𝑇𝑤)

𝑞𝑣𝐻2  was obtained. Figure 12 displayed the time-averaged non-dimensional temperature 

profile in the center horizontal location with different mesh sizes, and also included the data from 

DNS simulation [41] and results based on OpenFOAM RANS fine-mesh simulation [42]. The 

temperature profile with 30*30 node fitted best with the high-fidelity results. It should be noted 

that the finer mesh size did not provide higher accuracy in GOTHIC modeling and simulation in 

this case. And the results did not show a convergence as the mesh size decreased.  

 

Figure 12. Time-Averaged Non-dimensional Temperature Profiles with Different Meshes 

In Figure 13, different results using 2D and 3D models with same mesh size were compared 

with the high-fidelity data. Based on the results of Figure 12, 2D model with 30*30 node had the 

least simulation error of non-dimensional temperature profile compared to other nodes. A 3D 

model with same mesh size is applied for the same natural convection case to check whether the 

same mesh size was also the optimized option for 3D simulation. However, the non-dimensional 

temperature profile using 3D model is much different with the DNS and RANS high-fidelity 

simulations. One reason is that the information lost during the space and time averaging in different 

dimensions are different. Here the same characteristic length was applied for the heat transfer 

model due to the same mesh size, which indicated that model error should be similar and mesh 

error had greater impact on the simulation. The averaged values losses the local information 

obviously; therefore, even 3D fine-mesh result may not be reliable without choosing the “right” 

mesh size. 
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Figure 13. Time-Averaged Non-dimensional Temperature Profiles with Same Mesh Size using 

2D and 3D GOTHIC Models 

3.3.2. Mixed convection with Hot Air Injection 

A mixed convection case with hot air injection on bottom of one side wall and a vent on 

the other side wall was simulated using a GOTHIC 2D model to investigate the mesh size and 

model sensitivity in GOTHIC modeling and simulation, as shown in Figure 14. There is no 

volumetric heat source in this case. Three different mesh sizes (10*10, 20*20, 30*30) and four 

different forced convection heat transfer models were used and temperature distributions in 

vertical centerline were compared.  Table 1 listed these four heat transfer models applied. Standard 

k–ε turbulence model was applied in this case. 

 

Figure 14. The Illustration of GOTHIC Model for Mixed Convection 
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Table 2. Different Heat Transfer Correlations applied in Forced Convection Case 

Model 

NO. 
Nu Re 

For GOTHIC 
Experimentation 

B C D 

1 𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.3 103 - 105 0.023 0.8 0.3 Cooling inside tubes 

2 𝑁𝑢 = 0.683𝑅𝑒0.466𝑃𝑟0.333 101 - 104 0.683 0.466 1/3 Heating and 

cooling outside tubes 3 𝑁𝑢 = 0.246𝑅𝑒0.588𝑃𝑟0.333 103 - 105 0.246 0.588 1/3 

4 𝑁𝑢 = 0.228𝑅𝑒0.731𝑃𝑟0.333 103 - 104 0.228 0.731 1/3 

Heating or 

cooling over vertical 

plate 

 

The simulation on mixed convection using GOTHIC was greatly sensitive to the selections 

of mesh size and heat transfer model. Figure 15 showed the temperature distributions in the 

centerline with different mesh sizes and same heat transfer model. The temperature distribution 

with 20*20 nodes, not the finer one (30*30), was much closer to the High-Fidelity (HF) result with 

fine mesh size. The results did not show the significant convergence as the fine meshes were 

applied. Figure 16 shows the temperature distributions in the centerline with different models and 

same mesh size, compared with the HF data. It proved that the heat transfer in the top layer 

determined the heat removal and the temperature distribution. The simulation was also very 

sensitive to the model selection. 

 

Figure 15. Comparison of Temperature Distribution with Different Mesh Sizes and Same Heat 

Transfer Model 



www.manaraa.com

   

47 

 

 

Figure 16. Comparison of Temperature Distribution with Different Heat Transfer Models and 

Same Mesh Size 

3.4. Chapter Summary 

This chapter reviews the technical basis of GOTHIC in system-level thermal-hydraulic 

modeling and simulation. The main error sources include model error due to physical 

simplification and mathematical approximation, mesh error due to the information loss in applying 

averaging methods on balance/constitutive equations, and other numerical errors. All these error 

sources lead to not only the error for single phenomena simulation, but also the error propagation 

then further to the simulation error for system scenario simulation. For the thermal-hydraulic 

simulations using GOTHIC, the mesh size greatly affects the performance of the empirical 

correlations in the local near-wall cells since mesh size is treated as one of the model parameters 

that determine whether the correlations are applied in their applicable ranges or not. Meanwhile, 

the local instantaneous PDEs for mass, momentum and energy are time and space averaged to 

obtain the integral of finite volume equations. Simulation results from GOTHIC represent the 

averaged values of parameters over specified regions, which ignores the local gradient 

information. Mesh error indicates the information loss of conservative and constitutive equations 

during the application of time and space averaging approaches. The tight connection between these 

two main error sources and mesh size makes it difficult to perform traditional Verification and 

Validation (V&V) on these codes to analyze the model error and mesh error separately. The mesh 
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and mode sensitivity in the qualitative assessment proves that the mesh convergence does not apply 

for GOTHIC, the selection of mesh and model greatly affects the simulation performance.  
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CHAPTER 4. MACHINE LEARNING ALGORITHMS 

4.1. Introduction 

This chapter reviews the Machine Learning (ML) algorithms applied in fluid dynamics, 

especially the one-layer Forward Neural Network (FNN) and Deep Neural Network (DNN) which 

are applied in this work. 

Machine Learning (ML) teaches computers to do what comes naturally to humans and 

animals: learn from experience. ML algorithms use computational methods to "learn" information 

directly from data without assuming a predetermined equation as a model. These algorithms 

adaptively improve their performance as the number of samples available for learning increases. 

The goal is to find natural patterns in data that generate insight and help make better decisions and 

predictions. There are two types of ML techniques: supervised learning that trains a model on 

known input and output data so that it can predict future outputs, and unsupervised learning that 

finds hidden patterns or intrinsic structures in input data. The selection of an appropriate ML 

algorithm always puzzles users because there are dozens of supervised and unsupervised 

algorithms with different approaches to learning, and there is no “best” algorithm that can fits all 

problems.  

In order to meet the prediction needs, the application of supervised ML algorithms are more 

popular to train a model to generate reasonable predictions for the response to new data. Supervised 

learning uses classification and regression techniques to develop predictive models. Classification 

techniques normally work for the data that can be separated into specific groups or classes and 

predict discrete responses, while regression techniques mainly predict continuous responses. 

Neural Networks (NNs) [43,44], Gaussian Process Regression (GPR) [45], Random Forests (RFs) 

[46], Gene Expression Programming (GEP) [47] used in the data-driven modeling for fluid 

dynamics mentioned in last chapter all belong to supervised learning approaches. The main 

considerations in choosing the supervised learning method are the dimensionality of input, the 

quantity of training datasets, and the capability of prediction with quantified uncertainty, training 

speed and memory usage. The first three terms are mostly considered for prediction purpose. GPR 

is good at dealing with small datasets and low dimensionality, for high dimensionality problems, 

the Principal component analysis (PCA) method can be used for dimensionality reduction. 

Besides, GPR also has the capability for prediction on new data with quantified uncertainty. NNs 
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work well for high dimensionality problems with large datasets while little knowledge about the 

underlying process or suitable physical features exist. FNN can be very efficiently done on GPU 

platforms that accelerate the learning process quite a lot. FNN also has the capability of deep 

learning in which low-level features can be combined and transformed into high-level features. 

This capability allows them to learn meta-properties like symmetry or invariance more easily, 

however, a network with more hidden layers can raise the risk of overfitting the training data. [48] 

After evaluating these existing supervised learning methods, a Deep NN (DNN), which is a multi-

layer FNN, is identified as the currently efficient ML algorithm for OMIS approach. 

4.2. Feedforward Neural Network (FNN) 

A Feedforward Neural Network (FNN) is an information processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. The key 

element of this paradigm is the novel structure of the information processing system. It is 

composed of a large number of highly interconnected processing elements (neurons) working in 

unison to solve specific problems in parallel. As in nature, the connections between elements 

largely determine the network function. You can train a neural network to perform a particular 

function by adjusting the values of the connections (weights) between elements. Typically, neural 

networks are adjusted and trained so that a particular input leads to a specific target output, as 

illustrated in Figure 17. Here, the network is adjusted, based on a comparison of the output and the 

target, until the network output matches the target. Normally, many such input/target pairs are 

separately required for the training and testing of a network. [49] A FNN is an artificial neural 

network wherein connections between the units do not form a cycle. 

 

Figure 17. Schematic of How to train Neuron Networks [49] 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
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Neural networks, with their remarkable ability to derive meaning from complicated or 

imprecise data, can be used to extract patterns and detect trends that are too complex to be noticed 

by either humans or other computer techniques. A trained neural network can be thought of as an 

"expert" in the category of information it has been given to analyses. This expert can then be used 

to provide projections given new situations of interest and answer "what if" questions. Neural 

networks have been trained to perform complex functions in various fields, including pattern 

recognition, identification, classification, speech, vision, and control systems. 

I. Neuron Model 

A neuron with a single R-element input vector p (𝑃⃗ 𝑅∗1) is shown below in Figure 18. These 

individual element inputs are multiplied by weights W (𝜔⃗⃗ 1∗R) respectively, and the weighted 

values are fed to the summing junction. Their sum is simply Wp, the dot product of the (single 

row) matrix W and the vector p. The neuron has a bias b which is summed with the weighted 

inputs to form the net input n. This sum, n, is the argument of the transfer function f, a is the output 

of neuron. 

 

Figure 18. Illustration of Neural Model with with R Inputs [49] 

 𝑎 = 𝑓(𝑛) 𝑎𝑛𝑑 𝑛 = 𝑾 ∗ 𝒑 + 𝑏 (39) 

II. Network Architecture 

Two or more neurons can be combined in one layer to obtain one output. A network could 

contain one or more such layers. Here we firstly discuss single layer of neurons, as shown in Figure 

19, a one-layer network with R input elements and S neurons. In this network, each element of the 

input vector p (𝑃⃗ 𝑅∗1) is connected to each neuron input through the weight matrix W (𝜔⃗⃗ 𝑆∗𝑅). The 

ith neuron has a summation that gathers its weighted inputs and bias to form its own scalar output 

n(i). The various n(i) taken together form an S-element net input vector n. Finally, the neuron layer 

outputs form a column vector a (𝑎 𝑆∗1). 
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 𝒂 = 𝒇(𝑾 ∗ 𝒑 + 𝒃) (40) 

And the predicted scalar output, y, by the entire FNN can be expressed as, 

 𝑦 = 𝜽𝒂 + 𝜀 (41) 

Where 𝜽𝟏∗𝑺 is the weights and 𝜀 is the bias for 𝑎. 

 

Figure 19. Illustration of a One-layer Network [49] 

III. Fit Data with a Neural Network 

The application of NNs for this proposed approach is to fit the function between simulation 

error and several inputs. The workflow contains several steps as: (1) collect and process data, (2) 

create the network, (3) configure the network, (4) initialize the weights and biases, (5) train the 

network, (6) validate the network, (7) use the network for test or prediction. There are many 

algorithms to adjust the weights and biases. Levenberg-Marquardt method [50] is recommended 

for most problems, but for some noisy and small problems Bayesian Regularization [51] can take 

longer but obtain a better solution. For large problems, however, Scaled Conjugate Gradient 

method [52] is recommended as it uses gradient calculations which are more memory efficient 

than the Jacobian calculations the other two algorithms use. The evaluation metric of the function 

fitting is the Mean Squared Error (MSE) at each test point, 

   
𝑚𝑠𝑒 =

1

𝑛
∑(𝑇𝑘 − 𝑌𝑘)

2

𝑛

𝑘=1

 (42) 

Where, 𝑇𝑘 is the target output data considered as HF data while 𝑌𝑘 is the predicted output 

from the fit function by FNN, n is the number of the samples. Overfitting is an important issue that 

the model fits the training dataset well but fails in prediction. In order to avoid the possibility of 
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overfitting data, the HF data is divided into two sets as the training dataset and test dataset. The 

model is trained only using the training data and evaluated by the test data. It is also worth to note 

the number of coefficients that are calibrated during the FNN training. For R inputs and S neurons, 

the number of adjusted coefficients is S*(R+2)+1, where S*(R+1) for weights and S+1 for biases. 

More neurons means more coefficients needed to be calibrated. Overfitting may occur when the 

number of coefficients is greatly larger than the number of data points. 

4.3. Deep Neural Network (DNN) 

Deep learning or so-called Deep Neural Network (DNN) essentially refers to multilayer 

neural networks with more than two Hidden Layers (HLs). In DNNs, there are multiple layers of 

nodes, with the outputs of one layer becoming the inputs to the next layer. By using multiple layers 

of transformations, deep neural networks are able to capture complex, hierarchical interactions 

between features.  

 

Figure 20. Schematic of a Three-layer Network with R Input Elements 

Figure 20 illustrated the schematic of a typical three-layer feedforward network with one 

input layer, two HLs, and one output layer. The information flow is straightforward from input to 

output, so it is called feedforward network. For both neural network architectures, there were three 

main hyper-parameters: the number of hidden layers, the number of nodes per hidden layer and 

the learning rate in the gradient descent training algorithm. All three of these parameters can have 

a significant effect on model performance. Larger networks (with more hidden layers and more 

nodes per layer) can fit more complex data, but are also more prone to overfitting the data. 
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4.4. Chapter Summary 

In this chapter, the Machine Learning (ML) algorithms applied in fluid dynamics have been 

reviewed. Compared to other ML algorithms, the Feedforward Neural Network (FNN) works well 

for high dimensionality problems with large datasets while little knowledge about the underlying 

process or suitable physical features exist. FNN also has the capability of deep learning in which 

low-level features can be combined and transformed into high-level features. This capability 

allows it to learn meta-properties like symmetry or invariance more easily. After evaluating these 

existing supervised learning methods, the multi-layer Deep FNN (DNN), is identified as the 

currently efficient ML algorithm for OMIS approach. 

There are three main hyper-parameters: the number of hidden layers, the number of nodes 

per hidden layer and the learning rate in the gradient descent training algorithm. All three of these 

parameters can have a significant effect on model performance. Therefore, several DNN structures 

with different hidden layers and neuron numbers can be constructed as the potential ML method 

for data training and prediction. Larger networks (with more hidden layers and more neurons per 

layer) can fit more complex data but are more prone to overfitting the data and more 

computationally expensive. 
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CHAPTER 5. METHODOLOGY OF THE PROPOSED DATA-DRIVEN 

FRAMEWORK 

5.1. Introduction 

This chapter describes the methodology of the proposed OMIS framework. Mathematical 

basis, practical consideration, basic assumptions and hypotheses are introduced in Section 5.2 and 

5.3. Each step of the framework is explicitly illustrated in Section 5.4 with the applied methods, 

algorithms and equations. 

5.2. Mathematical Basis and Practical Consideration 

Consider a physical system that is governed by a set of non-linear equations, the physical 

system can be simulated using a coarse-mesh CFD-like code as, 

 𝐹𝐿𝐹(𝑉𝐿𝐹
⃗⃗ ⃗⃗ ⃗⃗ (𝑥 , 𝑡), 𝜆𝐿𝐹 , 𝛿𝐿𝐹) = 0 (43) 

where 𝐹𝐿𝐹 is the set of governing equations and constitutive equations as a LF model, 𝑉𝐿𝐹
⃗⃗⃗⃗⃗⃗ , 

𝜆𝐿𝐹  and 𝛿𝐿𝐹  represent the model variables, the model information (model forms and relative 

parameters), and the coarse mesh size used in the LF simulation. Simulation error (𝜀) including 

model error, mesh error and other numerical errors exists, even if the best possible set of 

parameters, models and mesh sizes have been inferred. Given the true solution as 𝑅𝑇
⃗⃗⃗⃗  ⃗ for the same 

physical condition, then the output quantities of interest can be expressed as, 

 𝑅𝑇
⃗⃗⃗⃗  ⃗ = 𝑅𝐿𝐹

⃗⃗ ⃗⃗ ⃗⃗  (𝑉𝐿𝐹
⃗⃗ ⃗⃗ ⃗⃗ , 𝜆𝐿𝐹, 𝛿𝐿𝐹) + 𝜀 + 𝜖 (44) 

where 𝑅𝐿𝐹
⃗⃗ ⃗⃗ ⃗⃗    represents the output of the LF simulation. 𝜖 is the measurement error. Then 

we can find 𝜀 is expressed as below for a given physical condition. 

 ε = (RT
⃗⃗⃗⃗  ⃗ − ϵ) − RL

⃗⃗ ⃗⃗  (VLF
⃗⃗ ⃗⃗ ⃗⃗ , λLF, δLF) (45) 

Or in the following expression if the measurement error is considered to be negligible, 

 𝜀 = 𝑅𝑇
⃗⃗⃗⃗  ⃗ − 𝑅𝐿𝐹

⃗⃗ ⃗⃗ ⃗⃗  (𝑉𝐿𝐹
⃗⃗ ⃗⃗ ⃗⃗ , 𝜆𝐿𝐹 , 𝛿𝐿𝐹) (46) 

One can conclude that the LF simulation error  𝜀  is determined by physical condition 

represented by 𝑅𝑇
⃗⃗⃗⃗  ⃗ and 𝑉𝐿𝐹

⃗⃗⃗⃗⃗⃗ , model information (model form and parameter, 𝜆𝐿𝐹) and the coarse 
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mesh size 𝛿𝐿𝐹 used for the LF simulation. However, the relationship shown in Equation (46) is 

difficult to explore. 

From the V&V point of view, the practical consideration of modeling and simulation is 

how to quantify the uncertainties and estimate the errors involved during the modeling and 

simulation process. As discussed in previous sections, the total simulation error (𝜀) for the physics 

of interest using these coarse-mesh CFD-like codes integrates the model error (𝜀𝑚𝑜𝑑𝑒𝑙), mesh error 

(𝜀𝑚𝑒𝑠ℎ) and other numerical error where the former two error sources have heavier weights on the 

total simulation error. Model error is somehow related to the model information for the physics of 

interest and local mesh sizes while mesh error is determined by the mesh size. Therefore, the 

relationship implied in Equation (46) is essentially the relationship between 𝜀 and 𝜀𝑚𝑜𝑑𝑒𝑙, 𝜀𝑚𝑒𝑠ℎ. 

The ideal way is to estimate these two error sources and find this relationship. However, these two 

error sources cannot be quantified separately due to their tight connections with the mesh size. By 

treating these two error sources together, the central idea of is to develop a surrogate model to 

identify the relationship between 𝜀 and specific local Physical Features (PFs), as shown in Figure 

21. The identification of PFs integrates the physical information of the system of interest, model 

information and the effect of mesh size.  

Once the error function 𝜀 = 𝑓(𝑃𝐹𝑠) is developed and evaluated based on existing data and 

the application of Ml algorithms, the simulation error for new condition with the specific mesh 

and model is predictable. The mesh size and model with least simulation error are identified as the 

optimal mesh size and model for the specific physical system, which means that, they are the “best” 

choice for the simulation for this condition. 

 

Figure 21. Central Idea of OMIS: Local Data Training for Error Estimation 
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5.3. Basic Assumptions and Hypotheses 

The basic assumptions for the development and application of OMIS framework are 

described: 

1. Technical tools: 

• Length scale of the physics of interest is large enough to be captured by coarse-mesh 

modeling and simulation. 

• The selected coarse-mesh LF computational tool is able to capture the basic physical 

behaviors of the system of interest, even with a large uncertainty. 

• The simulation error using coarse-mesh LF computational tool is mainly impacted 

by model error and mesh error. They cannot be quantified separately since mesh size 

is one of key model parameters that makes them tightly connected. 

• Always an appropriate ML algorithm has the basic capability to explore the local 

patterns and lost information in LF simulations. 

2. Data: 

• Training data is qualified and sufficient for Machine Learning (ML) algorithm to 

learn from and find the intrinsic knowledge of the physics.  

• A group of local PFs is able to represent the characteristics of local physics of 

interest. 

• The generation, process and classification of training and testing data ensure that 

they have the similar physical meanings. 

The hypotheses of the framework that need to be evaluated are: 

1. The simulation error can be represented as a function of key Physical Features (PFs) 

which integrate the information from local physics, applied models and local mesh sizes. 

2. “𝜀 = 𝑓(𝑃𝐹)” is not a fixed correlation, it just represents the relationship between 

simulation errors and physical features, which is improvable and compatible when new qualified 

data or physical conditions are added into training data. 
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3. The similarity of training data and testing data determines the predictive capability of 

trained ML algorithms on testing case. 

5.4. Framework Formulation 

This data-driven mesh-model optimization framework contains six independent steps as 

displayed in Figure 22. Although these steps are integrated as a modular manner, the specific 

assumptions, algorithms and methods applied in each step are flexible for different purposes and 

will not affect the execution of other steps. In order to achieve the ultimate goal: providing 

suggestions on the optimal mesh/model selection and error prediction on the global Quantities of 

Interest (QoIs), each step has its own tasks: 

• How to analyze the system and specify the QoIs of simulation target? (Step 1) 

• How to decompose the complex physics and identify relevant physical models applied 

in LF code? (Step 1) 

• How to identify and define potential PFs for the involved key physics? (Step 2) 

• How to construct reasonable test matrix for the target simulation? (Step 2) 

• Which factors should be considered in the selection of optimal PF group, ML tool and 

training database for target case? (Step 3, 4 and 5) 

• How to determine the contribution of each potential PF on responses? (Step 3) 

• How to evaluate the predictive capability of ML algorithms? (Step 4) 

• How to measure the similarity of training data and the data in target case? (Step 5) 

• How to estimate the error of global QoIs and suggest on the selection of optimal 

mesh/model? (Step 6) 
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Step 1. Target 

Simulation Analysis

5.2 Test the performance of defined metric: 

Does the prediction error decrease with measured extrapolative distance?

5.1 Define metric to calculate extrapolative distance

Step 5. Training Database Construction

No

5.3 Select the optimal training database by comparing extrapolative distance

Yes

Step 6. Error Prediction

Predict simulation error of local QoIs using selected PF group, ML algorithm and training database

Suggest the selection of meshes and models based on the predicted error of global QoIs

Step 7. Mesh/Model Suggestion

Preliminary 

Evaluation

Optimization

Application

3.2 Suggest optimal PF group based on the importance ranking

3.3 Evaluate predictive capability of suggested PF groups and select the optimal one

3.1 Identify and rank the importance of all potential PFs

Step 3. Physical Feature Group Optimization 

Not Satisfy

4.2 Test the predictive capability of the ML candidates and select the optimal one

4.1 Identify potential ML candidates

Step 4. Machine Learning Algorithm Determination

2.1 Define potential PFs

2.3 Build database

2.5 Design test matrix

2.7 Evaluate predictive capability of database on test matrix

2.2 Collect existing HF and LF data

2.4 Determine physics coverage condition 

of target case 

Step 2. Predictive Capability Development

Not SatisfyNot Satisfy

2.6 Apply ML algorithm on data training and prediction

2

1

3

 

Figure 22. Diagram of the Optimal Mesh/Model Information System (OMIS) Framework 
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5.4.1. Step 1: Simulation Target Analysis 

The first thing is to specify the key physics involved in the target simulation case. For 

different conditions like steady state or transient, coupled systems or single control volume, the 

dominating physics and relevant QoIs are also different. In the system-level thermal-hydraulic 

simulation of a NPP, the QoIs are normally influenced by a couple of different phenomena. A 

PIRT (Phenomenon Identification and Ranking Table) procedure should be executed to 

decompose the complex physics and identify the key phenomena. For example, a forced 

convection simulation using GOTHIC may imply an interaction of different physical models 

respectively for turbulence, wall friction and forced convection heat transfer. The respective 

closure models in the simulation tool should be pre-evaluated whether they are used in the 

applicable ranges or proper conditions. 

The QoIs in system-level thermal-hydraulic simulations are normally global parameters 

and depending on the phenomena in the given scenario. These parameters represent the system 

behaviors of NPPs and provide information for the decision-makings of operators. For example, 

in the normal operating of Boiling Water Reactors (BWRs), the main steam line temperature and 

reactor vessel pressure are considered as QoIs since they indicates the performance of the heat 

removal of fission in the fuel bundles. The temperature/pressure in the wetwell and the hydrogen 

fraction in the drywell can be considered as the key QoIs if the severe events happen as in the 

Fukushima accident. The values of these QoIs could help the operators and decision makers 

estimate the benefit and risk when to inject seawater into the units. Therefore, the estimation of 

these key QoIs is the criteria of which mesh or model is the optimal one in the OMIS framework.  

Besides, some global parameters should identified to represent the global physical 

condition of target case. This helps the selection of training database and also the construction of 

test matrix. For example, in a pipe flow, Re number should be identified as the key global physical 

parameter. Then the HF data, which belongs to pipe flow and has similar values of Re number 

should be selected into the potential training database in Step 2. According to Re number values 

in target case and training case, it should be addressed which “zone” the target belongs to.  

Lastly, according to the geometry and structure of the control volumes in the target case, a 

set of potential mesh sizes should be selected for different control volumes. Based on the capability 

of simulation tool, these mesh sizes should be in an appropriate range in which they are neither 
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too fine to cost much computation nor too coarse to lose much local information. Overall, the items 

that should be specified in this step are (1) Key phenomena and global QoIs in the target case; (2) 

Applicable physical models for these key phenomena in the simulation tool; (3) Global parameters 

that represents the global physical condition of target case; (4) Potential mesh sizes for specific 

control volumes. 

5.4.2. Step 2: Predictive Capability Development 

The central idea has been discussed in Section 5.2, which aims to identify the relationship 

between simulation error and local PFs. This step is proposed to establish the predictive capability 

by preliminarily defining potential PFs, building database, and evaluating whether the selected 

database has the predictive capability on the test matrix. The procedure of Step 2 is summarized 

in Figure 23.  

 

Figure 23. Diagram of Step 2: Procedure of Predictive Capability Development 

• Step 2.1: Define potential physical features 

The identification of PFs is guided by the physics decomposition and model evaluation 

executed in Step 1. In order to take physics scalability and regional information into consideration, 

the PF group should include the gradients of local variables and the local physical parameters that 

are able to represent the local physical behaviors or applied in crucial closure relationships. This 

ensures that the physical information of the physical system, model information applied and the 
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effect of mesh size are integrated and well represented in the PF group. As illustrated in Figure 24, 

the first part of local PFs are the gradients of variables including 1-order and 2-order derivatives 

of variables calculated using central-difference formulas. All potential PFs that satisfying the 

definition should be considered and included in the initial selection of PF group. 

 

Figure 24. Identification and classification of Physical Feature 
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The variable value in each cell is the averaged value. For the boundary cells, 
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(52) 

The gradients of local variables imply the regional (or local surrounding) information that 

represents the regional physical patterns. As displayed in Figure 25, the regional information 

obtained from the training dataset (as Case A) can be used to teach and inform the prediction of 

new conditions (as Case B) in GELI condition: if the regional information in blue part of Case A 

is similar to the blue part of Case B. More regional information may be involved if higher order 

derivatives are added into the local PF group.  

 

Figure 25. Illustration of How Regional Information is represented by Gradients of Variables in 

2D “GELI” Problems 

Second part of PF group is the local parameters that are defined to represent the local 

physical behaviors or applied in closure relationships. These parameters representing the local 

physical behaviors are supposed to provide the scalability of physics. This idea came from the 

early scaling, both of global approach and local approach were applied to develop non-dimensional 

groups based on facility dimensions and fluid conditions between full-scale facility and scaled test. 

The global approach was based on identifying different dimensions and fluid parameters to 

develop non-dimensional groups using the Buckingham Pi theorem, but these groups may not have 
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any physical meaning. The local approach is to non-dimensionalize the PDEs of conservation 

equations with reference values to obtain a set of local non-dimensional groups, such as Reynolds 

number, Froude number. [53] These groups do have physical meanings. Another part of local 

parameters as PFs is the parameters used or involved in the crucial local closure correlations for 

boundary layer. These parameters contain much information of length scale, model parameter and 

wall distance. 

It should be noted that these local parameters enable PF group the scalability and additivity 

of physics. Scalability of physics indicates that if the PF data of existing case and target case is 

similar, the local physical information of target case should be covered by existing case, even if 

these cases are in the different length scales. Meanwhile, the PFs identified for simple single 

phenomenon is still usable for complex coupled physics. PF group is improvable by adding more 

relevant PFs if new phenomena are involved.   

• Step 2.2: Collect existing high-fidelity and low-fidelity data 

First is to collect available HF data, which is relative to the involved physics in target case. 

HF data includes regional data from experimental observation, DNS data, and validated high-

resolution numerical results. Since the HF is normally in a limited quantity, the requirement of 

“HF” is flexible and determined by accuracy of expectation on target simulation. For example, if 

LF simulation of a NPP containment is executed by coarse-mesh GOTHIC modeling and expected 

to achieve the accuracy comparable to fine-mesh RANS simulation, then the results from STAR 

CCM+ using RANS models can be considered as HF data in this case. According to the physical 

conditions of limited HF data, LF data is generated using fast-running LF code with the candidates 

of mesh sizes and physical models. 

• Step 2.3: Build database 

Database includes PF group as input and errors of local FOMs as output. The data of PF 

group is calculated using LF simulation data as discussed in Step 2.1. The method applied for error 

calculation should be formulated. Normally, there are two methods to calculate the error between 

fine-mesh HF data and coarse-mesh LF data: point-to-point method and cell-to-cell method. The 

first one is to compare the values of FOMs at the exact locations existing in both of HF and LF 

data, this method can be applied if both HF and LF simulations are using Finite Element Method 

(FEM) or Finite Difference Method (FDM), as shown in Figure 26 (a). The second one is to 
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compare the values of FOMs in the coarse-mesh cell by mapping and averaging the values of 

FOMs in fine-mesh cells, as shown in Figure 26 (b). Here the cell-to-cell method is applied for 

error calculation. Errors of local FOMs in all cells should be calculated. Velocity is the main FOM 

for the adiabatic fluid flows, temperature should also be added in if heat transfer is involved.  

 

Figure 26. The Calculations of Error between Fine-Mesh Data and Coarse-Mesh Data 

• Step 2.4: Determine physics coverage condition of target case  

In the same way, PF data of target case should be calculated and compared with the 

collected data to determine which physics coverage condition the target case belongs to. OMIS 

framework is only applicable if the target case locates in GILI or GELI condition. Otherwise, the 

collected data is unusable to cover and inform the local physics of target case. Global parameters 

defined in Step 1 can be used to specify the global condition while the local condition is 

qualitatively identified by t-SNE (t-Distributed Stochastic Neighbor Embedding) method, which 

is a dimensionality reduction technique for the visualization of high-dimensional datasets. [54]  

• Step 2.5: Design test matrix 

Once the physics coverage condition of target case is determined, test matrix should be 

designed to investigate whether the PF group in collected database has the expected predictive 

capability for the determined physics coverage condition. Here extrapolative distance is defined to 

determine the coverage of collected data on the target data. The method applied on the calculation 

of extrapolative distance is described in Step 5 since it is also used to guide the construction of 

optimal training database for target case. The physical condition with similar extrapolative distance 
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should be designed for testing. According to the test matrix, the collected database is divided into 

training data and testing data. 

• Step 2.6: Apply machine learning algorithm on data training and prediction 

In this step, ML algorithm is applied to train the error database and obtain the regression 

function whose input are PFs and output are the errors of FOMs. As one of supervised learning 

methods, FNN works well for high dimensionality problems with large datasets while little 

knowledge about the underlying process or suitable physical features exist. FNN can be very 

efficiently done on GPU platforms that accelerate the learning process quite a lot and also has the 

capability of deep learning in which low-level features can be combined and transformed into high-

level features. This capability allows it to learn meta-properties like symmetry or invariance more 

easily, however, a network with more hidden layers can raise the risk of overfitting the training 

data. [48] After evaluating these existing supervised learning methods, multi-layer FNN is 

identified as the currently efficient ML algorithm for OMIS application. After trained by training 

data, the FNN with adjusted hyper-parameters is able to give error prediction on the testing case. 

• Step 2.7: Evaluate predictive capability on test matrix 

In this step, the original values of FOMs from LF simulations are modified by predicted 

errors from previous step. Then modified FOMs are compared with the FOMs in testing HF data. 

The prediction uncertainty mainly comes from the identification of PF group, data quality and 

quantity, and ML algorithm itself. This step is just a preliminary evaluation and following steps 

are trying to reduce the uncertainty. Here Mean Squared Error (MSE) is used to quantitatively 

evaluate the predictive capability, which is defined as below, 

 
𝑀𝑆𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =

1

𝑛
∑(𝑄𝑜𝐼𝐻𝐹,𝑖 − 𝑄𝑜𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2
 (53) 

The modified FOMs are also compared with the original LF results to investigate how 

much improvement is obtained. Once the comparison with HF data satisfies the expected accuracy, 

Step 2 is finished. Otherwise, there are three ways to improve the predictive capability, which are 

denoted as dash lines in Figure 23: (1) improving FNN structure, (2) defining new PFs and (3) 

collecting more data. Considering their workloads, these three amendments should be performed 

in the notated order. 
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The information flow of Step 2 is described in Figure 27. After identifying PFs and building 

database, training flow and testing flow are divided based on test matrix. In training flow, LF 

simulations with different mesh sizes and models are performed and then compared with HF data. 

The local errors (𝜀𝑖) of variables between mapped HF data (𝑉𝐻𝐹,𝑖) and LF simulations (𝑉𝐿𝐹,𝑖) are 

calculated and collected to obtain the error training database. The PF values (𝑃𝐹𝑖) of training flow 

are obtained using LF simulation results. The regression error function 𝜀 = 𝑓(𝑃𝐹) is obtained 

based on the training database using multi-layer FNN. Then by inserting the new PF values (𝑃𝐹𝑗) 

of testing flow into the error function, the respective errors (𝜀𝑗) can be predicted to modify the LF 

simulation results (𝑉𝐿𝐹,𝑗). The modified variable (𝑉𝑚,𝑗) are compared with the ones from HF data 

(𝑉𝐻𝐹,𝑗 ). The predictive capability is tested via validation metric (MSE) to check whether the 

prediction satisfies the expected accuracy. The determination of expected accuracy is based on the 

simulation purpose and limited knowledge on the true physics.  

 

Figure 27. Schematic of OMIS Approach: Training Flow and Testing Flow 

5.4.3. Step 3: Physical Feature Group Optimization 

This step is trying to answer one question: which factors should be considered in the 

selection of optimal PF group? According to the definition and classification of PFs discussed in 

Step 2.1, there can be a number of potential PFs in multi-physics condition. These PFs have 

different impacts on the responses (errors of local FOMs). Since training a multi-layer FNN with 

a huge number of PFs is computationally expensive, it is necessary to identify and rank the 

importance of each potential PF and select optimal PF group with respect to both of PF importance 

ranking and computation cost for data training. The procedure of PF group optimization is 

summarized in Figure 28. 



www.manaraa.com

   

68 

 

 

Figure 28. Diagram of Step 3: Procedure of PF Group Optimization 

• Step 3.1: Identify and rank the importance of all potential physical features 

In the past decades, researchers have put many efforts on variable importance analysis 

based on computational codes and measured data in almost all fields of engineering and science. 

Summarily, importance analysis aims to quantify [55] 

1. The change of model output value with respect to the variation of input variables, or 

2. The contribution of the uncertainties of input variables to the uncertainty of model 

output variable, or 

3. The strength of dependence between the model output variable and input variables. 

Currently, the popular importance analysis methods can be divided into two groups: 

mathematical techniques and statistical techniques. The mathematical techniques include the 

difference-based methods such as Morris’ screening [56], variance-based methods [57] and 

momentum-based methods [58]. These methods are developed to measure the importance of input 

variables of models and most of them need to compute the model response function at prescribed 

or well-designed points. [59] This feature makes them not suitable for the situation where only 

data not model is available. It should be noted that the concept of sensitivity analysis mostly used 

for computational models is similar to the first two definitions of importance analysis. These 

sensitivity analysis methods mostly belong to the group of mathematical techniques. There are 

some rigorous requirements to apply these methods. For example, difference-based methods are 

based on the computation of partial derivatives of model output to input variables, they are not 

applicable for the models with non-smooth response functions. Variance-based methods require 

the input variables to be independent, the correlated effects between input variables are not 
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considered. In this work, only data not model is available to generate input variable (PFs) 

information, and the inherent correlations between these variables are the key mutual property. 

Therefore, these traditional sensitivity analysis methods or mathematical techniques are not 

suitable to identify the PF importance.  

Another group, specified as statistical techniques, are designed to explore the variable 

importance based on data including parametric regression and non-parametric regression 

techniques. These methods are applicable for both computational model and pure data since the 

data of input variables can be generated by calling the response function or sampling from prepared 

database. Compared to parametric regression methods, non-parametric regression methods do not 

require a fixed regression model form or an uncorrelated relationship between the input variables. 

The relationship between PFs and errors of FOMs is highly non-linear and affected by the 

integration of several physical models, PF identification, data collection and numerical solvers. 

There are several popular non-parametric regression techniques such as Gaussian 

Process Regression [60] and Random Forest Regression (RF regression, or RFR) [46]. In this 

work, RFR is applied to quantify and rank the PF importance. As a supervised learning algorithm, 

RFR is much computationally efficient than multi-layer FNN. Compared to traditional statistical 

methods or other non-parametric regression methods, RFR do not need to assume any formal 

distributions for the data and can fast fit highly non-linear interactions even for large problems.  

RFR is an ensemble learning technique by constructing a forest of uncorrelated regression 

trees at training time and outputting mean prediction from these individual trees. The training 

algorithm for random forests applies the general technique of bootstrap aggregating (or 

bagging).  Given a training set 𝐷𝑁 = {(𝑋𝑁×𝐹, 𝑌𝑁)}, bagging repeatedly (M times) selects a random 

subsample ( Θ𝑚, 𝑚 = 1,2, …𝑀 ) with replacement of the training set and fits trees to these 

subsamples. N is the number of data points, 𝐹 is the number of input variables. M regression trees 

({ℎ(Θ𝑚),𝑚 = 1,2, …𝑀}) are trained and built for M times samplings, then provide M times of 

prediction (𝑝𝑚(𝑥𝑝)) for a new unseen sample (𝑥𝑝). Then final prediction is made by averaging the 

M predictions: 

 

𝑃 =
1

𝑀
∑ 𝑝𝑚(𝑥𝑝)

𝑀

𝑚=1

 (54) 

https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Gaussian_process
https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
https://en.wikipedia.org/wiki/Sampling_(statistics)#Replacement_of_selected_units
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This bootstrapping procedure leads to a good predictive performance since it de-correlates 

these regression trees and decreases the bias of ensemble prediction by providing different training 

datasets. Besides, the prediction uncertainty can be estimated as the standard deviation of the 

predictions from all the individual regression trees: 

 

𝜎 = √
1

𝑀 − 1
∑ (𝑝𝑚(𝑥𝑝) − 𝑃)

2
𝑀

𝑚=1

 (55) 

Normally, M is assigned as a few hundred to several thousand depending on the size of 

training dataset. Once the regression trees have been built, the importance of variables can be 

measured by observing the Out-Of-Bag (OOB) error, which is called Permutation Variable 

Importance Measure (PVIM) [46]. A set of OOB datasets can be generated as 𝐵𝑚 = 𝐷𝑁 − 𝛩𝑚. 

The following process describes the estimation of variable importance values by PVIM. Suppose 

the OOB data can be expressed as 𝐵𝑚 = {(𝑦𝑗
𝑚, 𝑥𝑗

𝑚),𝑚 = 1,2, …𝑀 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝑆} , 𝑆  is 

number of sample points. 

1. For the mth tree, the prediction errors on the OOB data before and after randomly 

permuting the values of the input variable 𝑋𝑓 (𝑓 = 1,2, … , 𝐹) are calculated using, 

 𝑀𝑆𝐸𝑚 =
1

𝑆
∑ (𝑦𝑗

𝑚 − 𝑦̂𝑗
𝑚)

2𝑆
𝑗=1  and 𝑀𝑆𝐸𝑚,𝑓 =

1

𝑆
∑ (𝑦𝑗

𝑚 − 𝑦̂𝑗,𝑓
𝑚 )

2𝑆
𝑗=1  (56) 

where 𝑦̂𝑗
𝑚  and 𝑦̂𝑗,𝑓

𝑚  are the prediction from the mth tree respectively before and after 

permutation. 

2. The difference between two predictions are defined as the value of PVIM for the mth 

tree: 

 𝑃𝑉𝐼𝑀𝑚,𝑓 = 𝑀𝑆𝐸𝑚,𝑓 − 𝑀𝑆𝐸𝑚 (57) 

3. The overall PVIM of 𝑋𝑓 in the OOB data is then calculated as, 

 

𝑃𝑉𝐼𝑀𝑓 =

1
𝑀

∑ 𝑃𝑉𝐼𝑀𝑚,𝑓
𝑀
𝑚=1

𝜎𝑓
 

(58) 

where 𝜎𝑓 is the standard deviation of the differences over the total OOB data. The value of 

𝑃𝑉𝐼𝑀𝑓 indicates the OOB importance of 𝑋𝑓 on the response. In this way, the OOB importance can 

be measured for each input variable. In the mth tree, if 𝑋𝑓 is not selected as the splitting variable 
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then 𝑃𝑉𝐼𝑀𝑓 = 0. It implies that the interactions between 𝑋𝑓 and other variables are considered to 

measure its contribution on the prediction accuracy. The importance of a variable increases with 

the value of PVIM. 

• Step 3.2: Suggest optimal physical feature group based on the importance ranking 

By performing importance analysis via RFR, the importance of each PF can be quantified 

and scored by the value of PVIM. Normally, the scores are in the range from 0 to 10. Based on the 

scores, the importance of PF is ranked in three levels: High, Middle and Low (H, M, and L). 

Different PF groups can be divided respectively including PFs in H level, H+M level and H+M+L 

level. 

• Step 3.3: Evaluate predictive capability of suggested physical feature group on test 

matrix 

After the importance identification and ranking, computational cost is saved in the data 

training for the PF groups only with H level or H+M level. However, uncertainty is also introduced 

due to reduction of PF dimensionality. The selected PF may be not sufficient to represent the 

underlying physics. Therefore, it is necessary to go back to Step 2.7 and re-test the predictive 

capability, as the dash line 1 shown in Figure 22. The selection of optimal PF group should well 

balance the accuracy and computation cost. If the predictive accuracy does not satisfy, the 

importance analysis should be executed by using better approaches. Two metrics should be 

considered here to finalize the optimal PF group:  

1. MSE of prediction: whether the reduced PF group keeps the underlying physics; 

2. Computational cost for data training: how much computation is saved using the reduced 

PF group. 

5.4.4. Step 4: Machine Learning Algorithm Determination 

After the optimization of PF group, the ML algorithm for data training and prediction is 

optimized and determined in this step. FNN is applied considering its deep-learning capability to 

explore the highly non-linear relationship between PFs and simulation errors. Therefore, the 

procedure of ML algorithm determination contains two parts: identify potential FNN candidates, 

test their predictive capability and select the optimal one with the consideration of accuracy and 

computation cost, as shown in Figure 29. 
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Figure 29. Diagram of Step 4: Procedure of ML Algorithm Determination 

There are three main hyper-parameters: the number of hidden layers, the number of nodes 

per hidden layer and the learning rate in the gradient descent training algorithm. All three of these 

parameters can have a significant effect on model performance. Therefore, several FNN structures 

with different HLs and neuron numbers can be constructed as the potential ML method for 

following data training and prediction. Larger networks (with more hidden layers and more 

neurons per layer) can fit more complex data, but are more prone to overfitting the data and more 

computationally expensive. Therefore, these FNN candidates should be tested by the test matrix 

built in Step 2.7 and the optimal FNN structure can be selected based on the MSE of prediction 

and the computational cost for data training. The dash line 2 shown in Figure 22 represents the re-

test of these potential FNN structures. 

5.4.5. Step 5: Training Database Construction 

This step focuses on how to select sufficient and necessary data for training and prediction. 

The training data is assumed abundant to “cover” the physics in the target case; however, some 

existing data may be not similar or even relevant to the target case. It is necessary to select the 

sufficient datasets as the final training database to avoid the huge computational cost on data 

training. Therefore, we need to answer a question: how to quantitatively measure the similarity of 

the data in the target case and training data? It is obvious that if target data is more covered or 

similar to the training data, the prediction error on the target case is smaller. In this step, a concept 

of extrapolative distance is defined to, (1) determine the coverage (or similarity) of training data 

on the target data and (2) guide the selection/generation of training data source. Then the 

performance of defined metric should be tested that whether the prediction error decrease with the 

measured extrapolative distance. Lastly, determine the optimal training database by comparing 

extrapolative distances between target data and the candidates of training database: the one with 
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smallest extrapolative distance is the optimal training database for final data training and 

prediction. The three-step procedure of training database construction is illustrated in Figure 30. 

 

Figure 30. Diagram of Step 5: Procedure of Training Database Construction 

• Step 5.1: Define metric to calculate extrapolative distance 

The goal of extrapolative distance is to measure how far the target point (𝑥𝑡𝑎 , 𝑦𝑡𝑎) is from 

the training dataset 𝐷𝑡𝑟 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑡𝑟} . Several approaches have been applied to 

quantify the distance. As a basic distance metric, Euclidean distance between the target point and 

the training dataset can be expressed as, 

 

𝑑𝐸𝑢 =
1

𝑡𝑟
∑√(𝑥𝑡𝑎 − 𝑥𝑖)2 + (𝑦𝑡𝑎 − 𝑦𝑖)2

𝑡𝑟

𝑖=1

 (59) 

Another similar metric, the nearest neighbor distance represents the Euclidean distance 

between the target point and its nearest point in the training dataset. These metrics based on 

Euclidean distance are easy to compute but very susceptible to noise and memory-consuming since 

all the points in training dataset are used. Besides, these metrics treat the training data as 

uncorrelated points and ignore their underlying interactions. There are some promising metrics 

which are designed memory-efficient by considering the distribution of the training dataset. 

Mahalanobis distance is defined as the distance between a point (𝒒) and the mean of training data 

(𝝁) with the covariance matrix (𝚺), which can be expressed as, 

 𝑑𝑀𝑎 = √(𝒒 − 𝝁)𝑇𝜮−1(𝒒 − 𝝁) (60) 
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Mahalanobis distance only considers the statistical parameters like mean and covariance 

instead of the entire raw data, this makes it more memory efficient. However, the drawback of 

Mahalanobis distance is its stringent assumption that the training data points yield a multivariate 

Gaussian distribution (𝝁, 𝚺). This is a weak assumption to deal with the data from thermal 

hydraulic simulations, especially for turbulent flows where multi-mode distributions may be 

common. To overcome this problem, a method called Kernel Density Estimation (KDE) is 

introduced in this step. KDE is a non-parametric way to estimate the probability density function, 

which assumes the training data distribution can be approximated as a sum of multivariate 

Gaussians. One can use a kernel distribution when a parametric distribution cannot properly 

describe the data, or when one wants to avoid making assumptions about the distribution of the 

data. KDE can be considered as the probability that the point (𝒒) locates in the distribution of 

training data (𝒑𝒊, 𝑖 = 1,2, … , 𝑛). It is expressed as, [61] 

 

𝑝𝐾𝐷𝐸 =
1

𝑛 ∙ ℎ1ℎ2 …ℎ𝑑
∑∏𝑘(

𝑞𝑗 − 𝑝𝑖,𝑗

ℎ𝑗
)

𝑑

𝑗=1

𝑛

𝑖=1

 (61) 

Where 𝑑 is the number of variables in 𝒒 and 𝒑𝒊. 𝑘 is the kernel smoothing function. ℎ𝑗  is 

the bandwidth for each variable.  A multivariate kernel distribution is defined by a smoothing 

function (𝑘) and a bandwidth matrix defined by 𝐻 = ℎ1, ℎ2, … , ℎ𝑑, which control the smoothness 

of the resulting density curve. Therefore, KDE can be used to measure the distance by estimating 

the probability of a given point locating in a set of training data points. In this step, the KDE 

distance is standardized as, 

 𝑑𝐾𝐷𝐸 = 1 −
𝑝𝐾𝐷𝐸

𝑝𝐾𝐷𝐸 + 0.1
 (62) 

Before the calculation of KDE distance, the data of PFs should be normalized into the range 

[0, 1]. Then the normalized KDE distance will locate from 0 to 1. Higher value of KDE distance 

means higher level of extrapolation. 

• Step 5.2: Test the performance of defined metric 

This step is proposed to whether the defined metric for extrapolative distance can represent 

the coverage of training data on target data. In other word, does the prediction error decrease with 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_density_function


www.manaraa.com

   

75 

 

the measured extrapolative distance? A test matrix can be built with same training database and 

different testing data sets. The mean of KDE distance for each test case can be calculated as, 

 
𝐷𝐾𝐷𝐸 =

1

𝑛
∑𝑑𝐾𝐷𝐸,𝑖

𝑛

𝑖=1

 (63) 

𝑑𝐾𝐷𝐸,𝑖 represents the KDE distance in each local cell of the target case. Then check whether 

the prediction errors of responses increase monotonically with the value of 𝐷𝐾𝐷𝐸. If yes, go to Step 

5.3. Otherwise, a better metric should be explored to measure the coverage. 

• Step 5.3: Select the optimal training database by comparing extrapolative distance 

By comparing the extrapolative distance of each candidate of training database, the optimal 

one can be selected with the smallest value of KDE distance. 

5.4.6. Step 6: Mesh/Model Suggestion 

After establishing the predictive capability (Step 2) and selecting the optimal PF group 

(Step 3), ML algorithm (Step 4) and training database (Step 5), the error prediction of local FOMs 

can be performed for the target case.  

Since the global QoIs normally have the most concerns on simulation analysis, the criterion 

of optimal mesh/model combination is whether this combination can lead to the least prediction 

error of the global QoIs for the target simulation case. The prediction accuracy of global QoIs 

depends on the accuracy of local predictions. The estimated error of global QoIs (𝜀𝑔𝑙𝑜𝑏𝑎𝑙) for 

different combinations of mesh size candidates and model candidates can be expressed as the 

average of estimated local error, 

 
𝜀𝑔𝑙𝑜𝑏𝑎𝑙 =

1

𝑛
∑𝜀𝑙𝑜𝑐𝑎𝑙,𝑖 (64) 

Select the one with least estimated error of global QoIs as the “optimal” mesh size and 

model for the target simulation using the LF code. The estimation on the error of LF simulation 

results are provided. 

5.5. Chapter Summary 

In this chapter, a data-driven framework for mesh-model optimization in system-level 

thermal-hydraulic modeling and simulation is proposed. The relevant mathematical basis, practical 
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consideration, basic assumptions and hypotheses are described before the framework formulation. 

The central idea is to develop a surrogate model to explore the relationship between local 

simulation error and specific local Physical Features (PFs). The identification of PFs integrates the 

physical information of the system of interest, model information and the effect of mesh size. 

The main outcomes of OMIS framework are the error prediction and suggestion on the 

optimal mesh and model selection using machine learning algorithms. OMIS framework is 

accomplished via a systematic procedure, the sub-outcomes include: (1) PF group is identified 

based on knowledge basis and has the extendibility from single phenomenon to complex physics; 

(2) scalability of identified PF group is pre-evaluated via test matrix and optimized by importance 

study before application; (3) different DNN structures are tested and compared to balance the 

prediction accuracy and computational cost; (4) data similarity of training data and testing data is 

measured using KDE distance and visualized in Physical Feature Coverage (PFC) using 

dimensionality reduction techniques, this provides a guide on the selection of training datasets. 

These outcomes not only serve on the error prediction and mesh/model selection, but also provide 

an insight on how to develop, evaluate and optimize a data-driven surrogate model in thermal-

hydraulic modeling and simulation.  

There are several other advantages of the proposed framework. Firstly, this modularized 

process has the extendibility to modeling and simulation using other coarse-mesh codes where 

mesh size is one of the key model parameters. For example, the error prediction on two-phase flow 

simulation using coarse-mesh RANS model can be performed using OMIS framework since mesh 

size is involved as a model parameter in the wall functions and closure models for interfacial 

forces. Here mesh convergence is not achievable and discretization error and model error are 

tightly connected. Besides, OMIS framework is applicable with limited available data due to the 

usage of advanced statistical and machine learning whose regression capability is trustworthy, and 

able to provide better predictions when more relevant data is provided. Finally, the most important 

benefit from this data-driven framework is its scalability achieved by exploring local physics 

instead of global physics. It is expected to have the scalability to improve the scale-distorted 

approaches that connect scaled data to the real full-scale applications and reduce the uncertainty 

of scaling. 
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The limitations of the framework also exist. Currently, the framework is proposed for 

steady-state modeling and simulation, how to apply the framework in a scenario simulation is a 

challenge, especially when the system condition changes frequently. Moreover, the uncertainty 

introduced by statistical and machine learning algorithms are not quantified, the relevant 

uncertainty propagation needs more analysis. Lastly, due to its data-driven property, the 

framework performance greatly relies the quality and quantity of available data. The uncertainty 

from the insufficiency of data also requires further studies. 
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CHAPTER 6. CASE STUDIES OF THE PROPOSED DATA-DRIVEN FRAMEWORK 

6.1. Introduction 

This chapter illustrates OMIS framework with the case study on mixed convection. 

Targeting on the “GELI” condition, OMIS framework is developed as a TDMI approach that deals 

with data, physical model and coarse-mesh simulation in an integrated manner using ML 

algorithms. By concentrating on the similarity of local physics, OMIS framework has a potential 

scalability to the globally extrapolative conditions. The underlying local physics of one specific 

physic condition is assumed to be represented by a set of Physical Features (PFs).  

The outcomes of OMIS approach are (1) quantitatively measuring the PF similarity of 

existing data and target data, and (2) identifying the relationship between these local PFs and local 

simulation error for future predictions. Therefore, the case study has been designed and executed 

to demonstrate the scalability and predictive performance of OMIS framework in the GELI 

condition.  

A 2D cavity with hot air injection on bottom of one sidewall, a vent on the other sidewall 

and a cold top wall has been modeled to simulate the mixed convection considering turbulence.  

To evaluate the proposed framework in different GELI conditions, different global 

extrapolations are designed in Section 6.2 and Section 6.3. Section 6.2 illustrates the entire OMIS 

framework based on the extrapolation of global parameter case study.  

Section 6.3 respectively discusses the OMIS application in GELI condition in extrapolation 

of geometry (aspect ratio), boundary condition and dimension.  Global parameters are defined 

based on the injection rate and temperature, geometry represents the aspect ratio of the cavity, 

while boundary condition refers to the heat removal condition: a cold top wall with a fixed 

temperature or a fixed heat flux.  

These three conditions all exceeds the application domain since the global physics 

condition changes with an unknown uncertainty. The overall objective is to provide error 

estimation and suggestion on optimal mesh/model selections, while the sub-objectives in each step 

include (1) establish the predictive capability, (2) identify optimal PF group, (3) determine optimal 

DNN structure, and (4) construct optimal training database. Lessons learned from each case study 

are also recorded for the improvement of the framework in the future. 
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6.2. Case Study: Extrapolation of Global Parameter  

6.2.1. Formulation 

The mixed convection case with hot air injection on bottom of one side wall and a vent on 

the other side wall was simulated using a GOTHIC 2D model, as shown in Figure 31. The height 

and length of this cavity are both 1m, while the height of the inlet and vent are both 0.2 m. The 

target case and the data warehouse are listed in Table 3. The global parameters are defined as 

below, 

 
𝐺𝑟𝑖 =

𝑔(𝜌𝑤 − 𝜌𝑖)𝜌𝑓𝐻
3

𝜇2
 (65) 

 
𝑅𝑒𝑖 =

𝑈𝑖𝜌𝑖𝐻

𝜇
 (66) 

It is obvious that 𝐺𝑟𝑖 of the target case is extrapolative of the cases in the data warehouse 

while 𝑅𝑒𝑖  of the target case is interpolative. Therefore, this case study is to investigate the 

performance of OMIS framework in the extrapolation of high 𝐺𝑟𝑖. By training a DNN using the 

data in data warehouse, the simulation error and optimal mesh/model selection of the target case 

will be provided. 

Table 3. Target Case and Data Warehouse of Case Study 

Case NO. 𝑇𝑖 (℃) 𝑈𝑖 (m/𝑠) 𝐺𝑟𝑖 𝑅𝑒𝑖 

Data Warehouse 

1 30 0.1 1.124E+09 5.863E+03 

2 33 0.2 1.414E+09 1.159E+04 

3 36 0.3 1.695E+09 1.717E+04 

4 39 0.4 1.967E+09 2.262E+04 

5 42 0.1 2.231E+09 5.585E+03 

6 45 0.2 2.486E+09 1.103E+04 

7 48 0.3 2.733E+09 1.634E+04 

8 51 0.4 2.971E+09 2.152E+04 

9 54 0.1 3.201E+09 5.312E+03 

10 57 0.2 3.424E+09 1.049E+04 

11 60 0.3 3.638E+09 1.554E+04 

Target case 63 0.4 3.845E+09 2.045E+04 

* For each case, one HF simulation is performed by Star CCM+, four LF simulations are performed 

by GOTHIC with different coarse meshes (1/10, 1/15, 1/25, 1/30 m). Each case generates 1850 

data points. 
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Figure 31. The Illustration of GOTHIC 2D Model for Mixed Convection Case Study 

6.2.2. Implementation 

• Step 1. Simulation Target Analysis: 

The physics investigated in this case is mixed convection with hot fluid injection and top 

heat removal. By performing PIRT process, mixed convection is mainly dominated by wall friction 

modeling, turbulence modeling and convection heat transfer modeling in GOTHIC, as illustrated 

in Figure 32. 

 

Figure 32. The Illustration of Physics Decomposition for Mixed Convection in Case Study 

The respective closure models in GOTHIC for these three phenomena are reviewed and 

qualitatively assessed in Chapter 3. The wall friction model applied in this case is Equation (9), 

which is completed by Equation (10) to Equation (24). The turbulence model is the standard two-

equation k–e model with the near-wall treatment in GOTHIC, as reviewed in Figure 9. The 

convection heat transfer model is Equation (6), which considers both of natural convection and 

forced convection. The models are listed as below, 
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𝐻𝑛𝑐 =

𝑘

𝑙
𝑀𝑎𝑥(0.54𝑅𝑎0.25, 0.14𝑅𝑎1/3) (67) 

 
𝐻𝑓𝑐 =

𝑘

𝑙
0.023𝑅𝑒0.8𝑃𝑟0.3 (68) 

The natural convection model shown in Equation (67) is a mix of two different convection 

models, which are developed to define a view of flat horizontal surface that is facing down, such 

as a ceiling in this case study. The forced convection model shown in Equation (68) is developed 

for pipe flow, which is the only well-defined forced convection model in GOTHIC. The real heat 

transfer coefficient is the maximum one of 𝐻𝑛𝑐 and 𝐻𝑓𝑐. In this case study, the physical models 

applied in Low-Fidelity (LF) simulation are fixed, the goal is simplified to predict the simulation 

error and suggest the optimal mesh size for the target case. It should be noted that mesh size is one 

of the key parameters of these applied closure models. Four different mesh sizes are applied for 

LF modeling and simulation: 1/10 m, 1/15 m, 1/25 m, and 1/30 m. 

The global QoI in this case is set as the outlet temperature 𝑇𝑜 via the vent, which is directly 

affected by these key physics. 𝑇𝑜 represents the heat removal capability of this square cavity. These 

parameters represent the system behaviors of NPPs and provide information for the decision-

makings of operators. For example, in the normal operating of BWRs, the temperature/pressure in 

the wetwell and the hydrogen fraction in the drywell can be considered as the key QoIs if the 

severe events happen as in the Fukushima accident. The values of these QoIs could help the 

operators and decision makers estimate the benefit and risk when to inject seawater into the units. 

Therefore, the estimation of these key QoIs is the criteria of which mesh or model is the optimal 

one in the OMIS framework. The global parameters have been identified as 𝐺𝑟𝑖 and 𝑅𝑒𝑖, which 

includes the global information such as injection condition, geometry condition and boundary 

condition. This helps the selection of training database and also the construction of test matrix.  

• Step 2. Predictive Capability Development: 

This step establishes the predictive capability of the data-driven model by preliminarily 

defining potential Physical Features (PFs), building database, and evaluating whether the selected 

database has the predictive capability on the test matrix. 

- Step 2.1: Define potential physical features 

The identification of PFs is guided by physics decomposition in Step 1.  
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The identified PFs in this case study are marked in red, as displayed in Figure 33. In 

addition to variable gradients, other part of PF group are the local parameters that are defined to 

represent the local physical behaviors or applied in closure relationships. Five different non-

dimensional parameters are defined in this case study: 𝑹 includes the turbulent information; 𝑹𝒆 is 

defined with the consideration of both 𝑹𝒆 in free cells and 𝑹𝒆 in near-wall cells; 𝑮𝒓 approximates 

the ratio of the buoyancy to viscous force acting on a fluid by considering local density change; 

𝑹𝒊  expresses the ratio of the buoyancy term to the flow shear term, which  represents the 

importance of natural convection relative to the forced convection; 𝑷𝒓  reflects the ratio 

of momentum diffusivity to thermal diffusivity, which depends only on the fluid property and 

state. 

 

Figure 33. Identification and classification of Physical Features in Case Study 

It should be noted that these local parameters enable PF group the scalability and additivity 

of physics. Scalability of physics indicates that if the PF data of existing case and target case is 

similar, the local physical information of target case should be covered by existing case, even if 

these cases are in the different length scales. Meanwhile, the PFs identified for simple single 

phenomenon is still usable for complex coupled physics.  

PF group is improvable by adding more relevant PFs if new phenomena are involved. For 

example, in a pre-test before this case study where only wall friction and turbulence are considered 

in an adiabatic condition, only 𝑹 and 𝑹𝒆 are used. 𝑮𝒓, 𝑹𝒊 and 𝑷𝒓 were added in when convection 

heat transfer should be considered. 

https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Viscous
https://en.wikipedia.org/wiki/Buoyancy
https://en.wikipedia.org/wiki/Flow_velocity
https://en.wikipedia.org/wiki/Shear_(fluid)
https://en.wikipedia.org/wiki/Natural_convection
https://en.wikipedia.org/wiki/Forced_convection
https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity
https://en.wikipedia.org/wiki/Thermal_diffusivity
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- Step 2.2: Collect existing high-fidelity and low-fidelity data 

High-Fidelity (HF) and Low-Fidelity (LF) data are respectively generated by Star CCM+ 

with fine mesh and GOTHIC with coarse mesh, as displayed in Figure 34. In this case study, HF 

data is generated using 2D RANS model in Star CCM+ with a nodalization of 150*150 in bulk 

and 600 refinement on top and bottom layer. The refinement on top and bottom is designed to 

capture the detailed information from injection in bottom part, heat removal and vent in top part. 

Standard k–ε low-Re model is applied with all y+ wall treatment since (1) this model is robust and 

easy to implement in small pressure gradient and good for mixing simulation; (2) low Re number 

approach provides identical coefficients to standard k–ε model and damping functions; (3) all y+ 

wall treatment is a hybrid treatment that emulates the low y+ wall treatment for fine meshes and 

the high y+ wall treatment for coarse meshes.  

 

Figure 34. Illustration of 2D GOTHIC Model with Coarse Meshes and 2D Star CCM+ Model 

with Fine mesh 

LF data is generated by GOTHIC in four groups with same closure models and different 

uniform mesh sizes: 1/10 m, 1/15 m, 1/25 m, and 1/30 m. In Figure 34, the 2D nodalizations in 

Star CCM+ and GOTHIC (10*10) are displayed with the temperature distribution and horizontal 

velocity magnitude. It is obvious that the variables in fine-mesh modeling are much more smoothly 

simulated and distributed. 
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- Step 2.3: Build database 

The inputs of database are made of the PFs defined in Step 2.1, and the outputs of database 

are the errors of the FOMs (𝑢, 𝑣, 𝑇). As described in Chapter 5, the cell-to-cell method is applied 

to calculate the errors in this case study. The inputs and outputs of database are listed in Table 4, 

where variables are 𝑢, 𝑣, 𝑇, 𝑃, 𝑘. The database includes the data from case 1 to 11 in Table 3. 

Table 4. Database Inputs and Outputs of Case Study 

Inputs 

Physical Feature Number 
∆𝑣𝑎𝑟𝑖

∆𝑥𝑗
 + 

∆2𝑣𝑎𝑟𝑖

∆𝑥𝑗∆𝑥𝑖
 10 +15 (2D) 

𝑅𝑒, 𝐺𝑟, 𝑅𝑖, 𝑃𝑟, R 5 

Outputs ∆𝐹𝑂𝑀𝑖 = 𝐹𝑂𝑀𝑖𝐻𝐹
− 𝐹𝑂𝑀𝑖𝐿𝐹

 3 (2D) 

 

- Step 2.4: Determine physics coverage condition of target case  

Considering that OMIS framework is only applicable when the target case locates in GILI 

or GELI condition, PF data of target case should be calculated and compared with the collected 

data to determine which physics coverage condition the target case belongs to. Otherwise, the 

collected data is unusable to cover and inform the local physics of target case.  

 

Figure 35. Physical Feature Coverage of Target Case in Case Study 

By using the dimensionality reduction technique t-SNE (t-Distributed Stochastic Neighbor 

Embedding) method, the physics coverage condition of the target case can be visualized, as shown 

in Figure 35. It is obvious that most of the data points of target case (red points) are covered or 

overlapped by the training data points (black points) in case 1-11, even though globally, target case 

is an extrapolation of training case. Considering the dataset is reduced from high dimensionality 

(30 D) to low dimensionality (2D), only coverage or overlapping represents the strong similarity. 

The relative distances among the points are stored and reflected from high dimensionality to low 
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dimensionality. For example, if the distance between point A and point B is further than the 

distance between point A and point C in original dimensionality, the distance between point A and 

point B is still further than the distance between point A and point C in new dimensionality. The 

physics coverage condition of target case is determined as GELI condition. 

- Step 2.5: Design test matrix 

Once the physics coverage condition of target case is determined as GELI, test matrix 

should be designed to investigate whether the PF group in collected database has the expected 

predictive capability for the determined physics coverage condition. Here extrapolative distance is 

defined to determine the coverage of collected data on the target data. The metric applied in this 

step is the mean of KDE distance, which is defined in Equation (63). The physical condition with 

similar mean of KDE distance should be designed for testing. Different conditions are designed 

and compared as listed in Table 5. Higher mean of KDE distance implies less coverage and 

similarity. The mean of KDE distance of target case from case 1-11 is a little smaller than the mean 

of KDE distance of case 11 from case 1-7, therefore, here Condition 1 in test matrix is selected as 

the test case. If the prediction on case 11 by using case 1-7 as training data is within an acceptable 

accuracy, the prediction on target case by using case 1-11 is trustworthy since they have similar 

mean of KDE distance. The Probability Density Functions (PDF) of KDE distance for four 

conditions in test matrix are displayed in Figure 36. Although they have similar distribution, 

Condition 1 has a “worse” coverage than others. Therefore, Condition 1 is a conservative option 

as the test case. 

 

Figure 36. PDFs of KDE Distance for Different Conditions in Test Matrix for Case Study 
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Table 5. Test Matrix with Different Training Case and Testing Case for Case Study 

Test Matrix Testing Case Training Case Mean of KDE distance 

- Target case 1-11 0.3354 

Condition 1 11 1-7 0.3389 

Condition 2 11 1-8 0.3216 

Condition 3 11 1-9 0.3067 

Condition 4 11 1-10 0.2940 

 

- Step 2.6: Apply machine learning algorithm on data training and prediction 

In this step, a FNN with 3 Hidden Layers (HLs) and 20 neurons in each HL is applied for 

data training and prediction on the test case. This 3-HL 20-neuron FNN is just used for testing, not 

the FNN structure for final training and prediction. 

- Step 2.7: Evaluate predictive capability on test matrix 

Here the prediction performed in previous step is evaluated using Mean Squared Error 

(MSE) as the metric. The original GOTHIC simulation results are compared with modified values 

by ML prediction, as shown in Figure 37. The vertical axis is the HF data averaged from Star 

CCM+. The values of predicted variables (red circles) are quite close to the values from HF data 

with small values of MSE. Blue points are the comparison between LF results and HF data. The 

proposed data-driven approach represents good predictive capability and scalability on estimating 

the local simulation error within an acceptable uncertainty even for the extrapolation of global 

physics. The MSEs of predictions are listed in Table 6. The results have been greatly improved by 

error prediction using ML. Better performance can be achieved if better DNN structure is applied 

for data training and prediction. 

Table 6. MSEs of Predictions for the Test Case in Case Study 

Testing Case Training Case MSE (u) MSE (v) MSE (T) 

11 1-7 1.0e-3 9.0e-4 2.65 

Original GOTHIC Simulation 9.3e-3 9.0e-3 24.3 
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Figure 37. Comparisons between Original GOTHIC Simulation Results and Modified Results by 

ML Prediction 

• Step 3. Physical Feature Group Optimization: 

In this step the importance analysis has been performed on these PFs to select optimal PF 

group with respect to both of PF importance ranking and computation cost for data training. 

- Step 3.1: Identify and rank the importance of all potential physical features 

By applying Permutation Variable Importance Measure (PVIM) based on Random Forest 

Regression (RFR), the importance of all potential PFs are identified, quantified and ranked, as 

shown in Figure 38. Higher value implies higher importance.  

 

Figure 38. Importance Estimation of PFs on Different Local FOMs 

The gradients of velocity, temperature and kinetic energy presents more importance than 

the ones of pressure since pressure does not change much in the entire cavity. The gradients of 

pressure are relatively implicit compared with others. All the local physical parameters shows great 

importance, especially 𝑃𝑟  number which is defined as the ratio of momentum 

diffusivity to thermal diffusivity. It should be noted that PVIM is a non-parametric method and 

purely relying on data. 

https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity
https://en.wikipedia.org/wiki/Viscosity#Kinematic_viscosity
https://en.wikipedia.org/wiki/Thermal_diffusivity
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- Step 3.2: Suggest optimal physical feature group based on the importance ranking 

According to the importance score of each PF in Step 3.1, the importance of PF can be 

manually classified into three levels: High, Middle and Low (H, M, and L). Each PF has 3 

importance scores depending on the number of FOMs. High level means all these three scores of 

this PF are higher than 1; Low level means all the scores are less than 1; Middle level represents 

the rest conditions. The importance classification of each PF is listed in Table 7. Therefore, three 

different PF groups can be generated respectively including PFs in H level, H+M level and 

H+M+L level. The classification of PF importance and group may have different criteria, which 

makes it feasible to select optimal PF group to represent the characteristics of the underlying 

physics in data. 

Table 7. Importance Classification of Each PF in Case Study 

NO. PF 
Importance 

Level 
NO. PF 

Importance 

Level 
NO. PF 

Importance 

Level 

1 
∆𝑢

∆𝑥
 H 11 

∆𝑡

∆𝑥
 H 21 

∆𝑘

∆𝑥
 H 

2 
∆𝑢

∆𝑦
 H 12 

∆𝑡

∆𝑦
 M 22 

∆𝑘

∆𝑦
 M 

3 
∆𝑣

∆𝑥
 H 13 

∆𝑝

∆𝑥
 M 23 

∆2𝑘

∆𝑥∆𝑥
 M 

4 
∆𝑣

∆𝑦
 H 14 

∆𝑝

∆𝑦
 L 24 

∆2𝑘

∆𝑦∆𝑦
 H 

5 
∆2𝑢

∆𝑥∆𝑥
 H 15 

∆2𝑡

∆𝑥∆𝑥
 H 25 

∆2𝑘

∆𝑥∆𝑦
 L 

6 
∆2𝑢

∆𝑦∆𝑦
 H 16 

∆2𝑡

∆𝑦∆𝑦
 M 26 𝑅𝑒 M 

7 
∆2𝑣

∆𝑥∆𝑥
 H 17 

∆2𝑝

∆𝑥∆𝑥
 L 27 𝑅 H 

8 
∆2𝑣

∆𝑦∆𝑦
 H 18 

∆2𝑝

∆𝑦∆𝑦
 L 28 𝐺𝑟 M 

9 
∆2𝑢

∆𝑥∆𝑦
 M 19 

∆2𝑡

∆𝑥∆𝑦
 M 29 𝑅𝑖 H 

10 
∆2𝑣

∆𝑥∆𝑦
 H 20 

∆2𝑝

∆𝑥∆𝑦
 L 30 𝑃𝑟 H 

* H: all scores > 1.0, L: all scores < 1.0, M: others. 
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- Step 3.3: Evaluate predictive capability of suggested physical feature group on test 

matrix 

In order to make a balance between prediction accuracy and computational efficiency, not 

all the potential PFs are needed for FNN training and error prediction. Three PF groups with 

different importance levels are applied and investigated in this step. Here MSEs of prediction are 

considered as the metrics to evaluate the prediction accuracy and training time of FNN represents 

the computational cost in FNN training. It shows that G2 with the PFs in H and M levels still well 

captures the underlying physics of data and also saves computation for FNN training. In Table 8, 

MSEs of G2 PF group is very close to the values of G3 PF group, while the training time is less 

than the half. Therefore, G2 PF group with PFs in H and M levels is used as the optimal PF group 

in this case study for the following steps.  

Table 8. Predictive Capability of Different PF Groups on Test Case 

PF Group 
NO. of 

PF 
MSE (u) MSE (v) MSE (T) 

Training 

Time 

Testing 

Case 

Training 

Case 

FNN 

Structure 

G1 (H) 16 6.0e-3 4.2e-3 3.73 1 h 

11 1-7 

3-HL 20-

Neuron 

FNN 

G2 (H+M) 25 1.1e-3 1.1e-3 2.69 1.5 h 

G3 (All) 30 1.0e-3 9.0e-4 2.65 3.5 h 

Original GOTHIC 

Simulation 
9.3e-3 9.0e-3 24.3  

 

The PFs in G2 PF group are listed in Table 9, the number of PF is reduced from 30 to 25. 

It is expected to reduce more for more complex conditions. It should be noted that more groups 

can be generated if needed, and predictive capability can be improved using complex FNNs. No 

matter which PF group is selected, original GOTHIC simulation is greatly improved. 

Table 9. The Optimal PF Group for Case Study 

Optimal Physical Features Number 

Variable 

Gradients 

∆𝑢

∆𝑥
,  

∆𝑢

∆𝑦
,  

∆𝑣

∆𝑥
,  

∆𝑣

∆𝑦
 ,

∆𝑡

∆𝑥
 , 

∆𝑡

∆𝑦
,  

∆𝑝

∆𝑥
,
∆𝑘

∆𝑥
,  

∆𝑘

∆𝑦
,

∆2𝑢

∆𝑥∆𝑥
,  

∆2𝑢

∆𝑦∆𝑦
,  

∆2𝑣

∆𝑥∆𝑥
,  

∆2𝑣

∆𝑦∆𝑦
,  

∆2𝑢

∆𝑥∆𝑦
, 

∆2𝑣

∆𝑥∆𝑦
,

∆2𝑡

∆𝑥∆𝑥
, 

∆2𝑡

∆𝑦∆𝑦
, 

∆2𝑡

∆𝑥∆𝑦
,

∆2𝑘

∆𝑥∆𝑥
, 

∆2𝑘

∆𝑦∆𝑦
 

20 

Local 

Parameters 
𝑅𝑒, 𝐺𝑟, 𝑅𝑖, 𝑃𝑟, R 5 
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• Step 4. Machine Learning Algorithm Determination: 

After the optimization of PF group, the ML algorithm for data training and prediction is 

optimized and determined in this step. Multi-layer FNN is selected as the ML algorithm in this 

work considering its deep-learning capability to explore the highly non-linear relationship between 

PFs and simulation errors. Therefore, the procedure of ML algorithm determination contains two 

parts: identify potential ML candidates, test their predictive capability and select the optimal one 

with the consideration of accuracy and computation cost. Same as the previous step, MSEs and 

training time are identified as the evaluation metrics. In this step, different multi-layer FNN 

structures are investigated for the test case. The performance of each FNN structure can be found 

in Table 10. It shows that the 4-HL 20-neuron FNN has the most promising performance: higher 

accuracy and less computational cost. Therefore, the 4-HL 20-neuron FNN is selected as the 

optimal FNN structure and ML algorithm in following steps. 

Table 10. Performance of FNN Candidates for Test Case 

Hidden 

Layer NO. 

Neuron 

NO. 

Training 

Time 
MSE (u) MSE (v) MSE (T) 

Testing 

Case 

Training 

Case 

1 20 0.5 h 3.2e-3 4.4e-3 9.13 

11 1-7 

2 20 1 h 2.4e-3 1.3e-3 3.02 

3 20 1.5 h 1.1e-3 1.1e-3 2.69 

3 30 9 h 1.2e-3 7.2e-4 1.57 

4 20 6 h 8.2e-4 7.1e-4 1.07 

Original GOTHIC Simulation 9.3e-3 9.0e-3 24.3  

 

The predictive performance using 4-HL 20-neuron FNN for training and prediction is 

shown in Figure 39. Compared with the original GOTHIC simulation results (blue points), the 

values of predicted variables (red circles) are much close to the values mapped from HF data with 

small MSE. And it is obvious that the prediction using 4-HL 20-neuron FNN is much better than 

the prediction using 3-HL 20-neuron FNN. 
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Figure 39. Predictive Performance using 4-HL 20-neuron FNN 

• Step 5. Training Database Construction: 

After the optimization of PF and FNN selection, this step focuses on how to select sufficient 

and necessary data for training.  

- Step 5.1: Define metric to calculate extrapolative distance 

In this work, KDE distance is applied as the extrapolative distance. If target data is more 

covered or similar to the training data, the prediction error on the target case is smaller. KDE is 

a non-parametric way to estimate the probability density function, which assumes the training data 

distribution can be approximated as a sum of multivariate Gaussians. One can use a kernel 

distribution when a parametric distribution cannot properly describe the data, or when one wants 

to avoid making assumptions about the distribution of the data. KDE can be used to measure the 

distance by estimating the probability of a given point locating in a set of training data points. In 

this step, the KDE distance is standardized as in Equation (62). Before the calculation of KDE 

distance, the data of PFs should be normalized into the range [0, 1]. The normalized KDE distance 

locates from 0 to 1. Higher value of KDE distance means less similarity. 

- Step 5.2: Test the performance of defined metric 

In this step, the capability of KDE distance to represent the coverage of training data on 

target data is evaluated. In other word, does the prediction error decrease as the KDE distance 

increases? A test matrix can be built with same training database and different testing data sets. 

The mean of KDE distance for each test case can be calculated in Equation (63). Several tests are 

performed to explore the relationship between mean of KDE distance and MSEs of prediction, as 

displayed in Table 11. It seems that there is a nearly positive relationship between mean of KDE 

https://en.wikipedia.org/wiki/Non-parametric_statistics
https://en.wikipedia.org/wiki/Density_estimation
https://en.wikipedia.org/wiki/Probability_density_function
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distance and MSEs of prediction, as displayed in Figure 40. With higher mean of KDE distance, 

the MSEs of prediction tends to increase. This conclusion is instructive for the selection of optimal 

training database and also the development of validation experiments. This relationship should be 

more distinct when more data are included. 

Table 11. Mean of KDE distance and MSEs of Prediction of Tests 

Training 

Cases 

Testing 

Case 
FNN Structure 

Mean of KDE 

distance 
MSE (u) MSE (v) MSE (T) 

1-7 

8 

4-HL 20-Neuron 

0.2282 8.9e-5 8.54e-5 0.20 

9 0.2493 8.5e-4 8.6e-4 2.01 

10 0.2834 1.0e-3 9.0e-4 2.11 

11 0.3450 1.1e-3 1.1e-3 2.69 

1-8 

9 0.2442 5.2e-4 6.5e-4 1.46 

10 0.2732 9.36e-4 7.53e-4 1.75 

11 0.3269 1.20e-3 1.03e-3 1.72 

1-9 
10 0.2622 8.7e-4 9.0e-4 2.34 

11 0.3112 1.14e-3 9.5e-4 1.79 

 

 
Figure 40. Relationship between Mean of KDE distance and MSEs of Prediction 

- Step 5.3: Select the optimal training database by comparing extrapolative distance 

By comparing the mean of KDE distance of each candidate of training database, the 

optimal one can be selected with the smallest value of KDE distance, as shown in Table 12. 

According to the values of mean of KDE distance, it is proved that case 11 has very similar data 

as the target case, which is obvious. Case 1 seems has the largest difference with the target case 



www.manaraa.com

   

93 

 

since when it is not included in the training database, the mean of KDE distance decreases a lot. 

Although the training database with case 3-11 has smaller mean of KDE distance than the one of 

training database with case 2-11, the latter one is selected as the optimal training database since 

the prediction error does not change much when mean of KDE distance exceeds 0.3, according to 

Figure 40. And the performance of multi-layer FNN relies on the size of training database, it tends 

to include more data to fully capture the underlying information. By considering FNN performance 

and computational cost in FNN training, here the training database with case 2-11 is selected as 

the optimal training database, as displayed in  

Table 13. The Probability Density Functions (PDFs) of KDE distance for the candidates of 

training database are displayed in Figure 41.  

Table 12. Mean of KDE distance of Training Database Candidates 

Testing Case Training Cases Mean of KDE distance 

Target case 

1-11 (all) 0.3388 

1-10 0.3542 

2-11 0.3253 

3-11 0.3126 

 

Table 13. Optimal Training Database and Target Case 

Case NO. T (℃) U(m/𝑠) 𝐺𝑟𝑖 𝑅𝑒𝑖 
 1 30 0.1 1.124E+09 5.863E+03 

Training 

Database 

2 33 0.2 1.414E+09 1.159E+04 

3 36 0.3 1.695E+09 1.717E+04 

4 39 0.4 1.967E+09 2.262E+04 

5 42 0.1 2.231E+09 5.585E+03 

6 45 0.2 2.486E+09 1.103E+04 

7 48 0.3 2.733E+09 1.634E+04 

8 51 0.4 2.971E+09 2.152E+04 

9 54 0.1 3.201E+09 5.312E+03 

10 57 0.2 3.424E+09 1.049E+04 

11 60 0.3 3.638E+09 1.554E+04 

Target case 63 0.4 3.845E+09 2.045E+04 
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Figure 41. PDFs of KDE Distance for Different Conditions in Test Matrix 

• Step 6. Mesh/model Suggestion: 

The error prediction of local FOMs can be performed for the target case by using optimal 

PF group in Step 3, optimal NN structure in Step 4, and optimal training database in Step 5. 

Table 14. Optimal PH Group, FNN structure and Training Database 

Optimal Physical Features 

Variable Gradients 

∆𝑢

∆𝑥
,  

∆𝑢

∆𝑦
,  

∆𝑣

∆𝑥
,  

∆𝑣

∆𝑦
 ,

∆𝑡

∆𝑥
 , 

∆𝑡

∆𝑦
,  

∆𝑝

∆𝑥
,
∆𝑘

∆𝑥
,  

∆𝑘

∆𝑦
, 

∆2𝑢

∆𝑥∆𝑥
,

∆2𝑢

∆𝑦∆𝑦
,  

∆2𝑣

∆𝑥∆𝑥
,  

∆2𝑣

∆𝑦∆𝑦
,  

∆2𝑢

∆𝑥∆𝑦
, 

∆2𝑣

∆𝑥∆𝑦
,

∆2𝑡

∆𝑥∆𝑥
, 

∆2𝑡

∆𝑦∆𝑦
, 

∆2𝑡

∆𝑥∆𝑦
,

∆2𝑘

∆𝑥∆𝑥
, 

∆2𝑘

∆𝑦∆𝑦
 

Local Parameters 𝑅𝑒, 𝐺𝑟, 𝑅𝑖, 𝑃𝑟, R 

Optimal Neural Network Structure 

4-HL 20-neuron FNN 

Optimal Training Database 

Case 2 - 11 

 

In this case study, the global QoI is defined as the outlet temperature. The criterion of 

optimal mesh/model combination is whether this combination can lead to the least prediction error 

of the global QoIs for the target simulation case. The prediction accuracy of global QoIs depends 

on the accuracy of local predictions. The estimated error of global QoIs (𝜀𝑔𝑙𝑜𝑏𝑎𝑙) for different 

combinations of mesh size candidates and model candidates can be expressed as the average of 
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estimated local error, as in Equation (64). Considering there are four different mesh sizes for 

selection, the outlet temperature is calculated as the average shown in Figure 42. The predicted 

errors of outlet temperature with different mesh sizes are listed in Table 15. Considering the HF 

data for the target case is assumed not available, one cannot compare GOTHIC results and 

determine which mesh produces the least simulation error. According to the error prediction using 

optimal FNN, PF group and training database, GOTHIC simulation with the mesh size as 1/30 m 

has the least predicted error of outlet temperature considering the closure model selection is fixed 

in this case study. Therefore, 1/30 m is the optimal mesh size for this target case, and the predicted 

error of outlet temperature is 0.89. 

 

Figure 42. Illustration of Outlet Temperature Calculation in Each Coarse-mesh Simulation 

Table 15. Predicted Error of Outlet Temperature with Different Mesh Sizes 

Mesh and Model Candidates Predicted Error of 𝑇𝑜 

Model is fixed in this case 

10*10 1.88 

15*15 0.96 

25*25 1.74 

30*30 0.89 

 

6.2.3. Lessons Learned 

After the application of the framework on this case study, we can evaluate, 

1. Whether 1/30 m is the optimal mesh size for the target case when the physical model 

selection is fixed? 
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The comparison between original GOTHIC simulation error and predicted error from 

OMIS are displayed in Table 16. When 1/30 m is used as the mesh size, LF simulation using 

GOTHIC has the least simulation error on the prediction of outlet temperature.  HF data are 

mapped from fine-mesh simulations using Star CCM+. It is proved that 1/30 is the optimal mesh 

size for this case study. 

2. Whether the error prediction on outlet temperature is accepted?  

By comparing LF simulation error and predicted error from OMIS in Table 16, the error 

of prediction from OMIS is calculated and much smaller than 1%. It is sufficiently accurate and 

well acceptable. 

Table 16. Comparison of Original GOTHIC Simulation Error, Predicted Error by OMIS and 

Prediction Error of Outlet Temperature 

Mesh 

Size 
𝑇𝑜𝐿𝐹

 𝑇𝑜𝐻𝐹
 𝑇𝑜𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

 LF Simulation 

Error 

Predicted 

Error 

Relative Prediction 

Error 

10*10 59.11 61.08 60.99 1.97 1.88 0.15% 

15*15 60.33 61.43 61.29 1.1 0.96 0.22% 

25*25 60.01 61.64 61.75 1.63 1.74 0.17% 

30*30 60.74 61.68 61.63 0.94 0.89 0.08% 

 

3. Whether the LF simulation using GOTHIC can be well corrected by OMIS framework? 

The corrected results by ML training are compared with the original GOTHIC simulation 

as displayed in Figure 43. LF simulation is greatly improved by applying OMIS framework. 

 

Figure 43. Comparisons between GOTHIC Simulation Results and Corrected Results by OMIS 

framework for the Simulation of Target Case with 1/30 m as Mesh Size 
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This case study denotes that data similarity between training data and target data is directly 

affecting the NN training and prediction. The metric to measure extrapolative distance is set as 

mean of KDE distance in this work. The relationship between mean of KDE distance and 

prediction error (MSEs of local QoIs) needs more investigation and analysis. Meanwhile, the 

construction of training database should consider both of the quantity and similarity of training 

data. The balance between data quantity and data similarity is discussed in Section 6.3.  

6.3. Discussion on Application 

In this section, three extrapolative situations in GELI condition are proposed, analyzed and 

evaluated. The mixed convection simulation is still used as the case study. Section 6.3.1 discusses 

the extrapolation of geometry, training cases and testing cases have different aspect ratios. Section 

6.3.2 demonstrates the extrapolation of boundary condition, training cases have fixed top wall 

temperature while the testing cases have fixed top heat flux. Section 6.3.3 investigates the 

extrapolation of dimension, testing cases have larger height and length than the training cases, so 

it can be considered as the extrapolation of global length scale. The objective of the efforts in this 

section is to investigate the predictive capability of proposed OMIS approach in GELI condition.  

Besides, these extrapolation case studies also: 

1. Explore the importance of training data size and similarity. The similarity is quantified 

using KDE distance between training data and target data. (Extrapolation of geometry) 

2. Explore the relationship between extrapolative distance and prediction error. The metrics 

for extrapolative distance and prediction error are respectively mean of KDE distance and 

Normalized Root Mean Squared Errors (NRMSEs) of variables. NRMSE is calculated using 

Equation (69). (Extrapolation of boundary condition, extrapolation of dimension) 

 

𝑁𝑅𝑀𝑆𝐸𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 =
√1

𝑛
∑(𝑄𝑜𝐼𝐻𝐹,𝑖 − 𝑄𝑜𝐼𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖)

2

1
𝑛

∑𝑄𝑜𝐼𝐻𝐹,𝑖

 
(69) 

6.3.1. Extrapolation of Geometry (Aspect Ratio) 

In this case, three cavities with different aspect ratios are modeled, as shown in Figure 44. 

The injection condition and geometry parameters are listed in Table 17. Dataset A contains the 

case 1-12 in the previous case study discussed in Section 6.2. Dataset B and C respectively contain 

the rectangular modeling cases with aspect ratios as 1/0.8 and 0.8/1. 
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Figure 44. Three Cavity Models with Different Aspect Ratios 

Table 17. Geometry and Injection Conditions of Datasets in Extrapolation of Geometry 

Dataset Geometry Aspect Ratio 
Injection 

Temperature 
Injection Rate Data Size 

A 

1 

Square  L/H = 1/1 

30 C 0.1 m/s 

12*1850 

2 33 C 0.2 m/s 

3 36 C 0.3 m/s 

4 39 C 0.4 m/s 

5 42 C 0.1 m/s 

6 45 C 0.2 m/s 

7 48 C 0.3 m/s 

8 51 C 0.4 m/s 

9 54 C 0.1 m/s 

10 57 C 0.2 m/s 

11 60 C 0.3 m/s 

12 63 C 0.4 m/s 

B Rectangular L/H = 1/0.8 

45 C 0.2 m/s 

3*1480 48 C 0.3 m/s 

51 C 0.4 m/s 

C Rectangular L/H = 0.8/1 

45 C 0.2 m/s 

3*1480 48 C 0.3 m/s 

51 C 0.4 m/s 

* For each case, one HF simulation is performed by Star CCM+, four LF simulations are performed 

by GOTHIC with different coarse meshes (1/10, 1/15, 1/25, 1/30 m). Each case in A generates 

1850 data points, while each case in B and C generates 1480 data points. 

As shown in Table 18, test 1~3 are designed to investigate how the training data size affects 

the predictive capability of this data-driven approach. By using the dimensionality reduction 

technique t-SNE (t-Distributed Stochastic Neighbor Embedding) method, the physics coverage 

condition of the target case can be visualized, as shown in Figure 45. It is obvious that the data 
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points of “rectangular” case are covered or overlapped by the training data points in “square” cases, 

even though globally, testing dataset is an extrapolation of geometry to training dataset. The 

physics coverage condition of target case is determined as GELI condition.  

Table 18. Physics Coverage Conditions in Extrapolation of Geometry Case Study 

Test 

NO. 

Training 

Dataset 

Testing 

Dataset 

Physics Coverage 

Condition 
Global Physics Local Physics 

1 A (1 ~ 12) B+C 

GELI Geometry 

(Aspect Ratio) 

Physical 

Feature Group 

2 A (4 ~ 10) B+C 

3 A (6 ~ 8) B+C 

4 B+C A (6 ~ 8) GILI 

 

 

Figure 45. Physical Feature Coverage of “Rectangular” Cases in “Square” Cases 

Table 19. Tests in Extrapolation of Geometry Case Study 

Test 

NO. 

Training 

Dataset 

Testing 

Dataset 

Physics 

Coverage 

Condition 

NRMSE 

(u) 

NRMSE 

(v) 

NRMSE 

(T) 

Mean of 

KDE 

Distance 

1 A (1 ~ 12) B+C 

GELI 

0.2712 0.3558 0.0223 0.3190 

2 A (4 ~ 10) B+C 0.2640 0.3514 0.0243 0.2894 

3 A (6 ~ 8) B+C 0.0278 0.0287 0.0022 0.2773 

4 B+C A (6 ~ 8) GILI 0.0151 0.0140 0.0009 0.2687 
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(a) Horizontal Velocity  (b) Vertical Velocity (c) Temperature 

Test 1: Training Data A (1 ~ 12) 

   

(d) Horizontal Velocity  (e) Vertical Velocity (f) Temperature 

Test 2: Training Data A (4 ~ 10) 

   

(g) Horizontal Velocity  (h) Vertical Velocity (i) Temperature 

 Test 3: Training Data A (6 ~ 8)  

Figure 46. Comparisons between Original GOTHIC Simulation Results and Corrected Results 

based on OMIS Prediction of Test 1 to Test 3 

The values of mean of KDE distance are also listed in Table 19. It shows that when the 

mean of KDE distance decreases, the prediction accuracy increases even if the training data size 

decreases. Higher mean of KDE distance represents less similarity of training data and testing data. 

It implies that the similarity between training data and testing data should be considered in the first 

place to construct the training database. The application of ML algorithm requires the training 
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database should include data points at a certain scale, however, the similarity or relevance of data 

should not be ignored. Adding too much dissimilar or irrelevant data may “hurt” the training and 

predictive capability of ML algorithms. The comparisons between original GOTHIC simulation 

results and corrected results based on OMIS prediction of test 1 to test 3 are shown in Figure 46, 

where blue points represents original GOTHIC simulation results and red circles are corrected 

results based on OMIS prediction. The corrected results based on OMIS prediction tends to be 

closer to HF data as the similarity of training data and testing data increases.  

Test 4 is identified as a situation in GILI condition since the square cavity can be considered 

as an interpolation of these two rectangular cavities with aspect ratio respectively equaling to 1/0.8 

and 0.8/1. By performing data training using same FNN structure and initial hyper parameters, the 

prediction errors (NRMSEs) are listed in Table 19, which is much smaller than the tests in GELI 

condition. The comparisons between original GOTHIC simulation results and corrected results 

based on OMIS prediction of test 4 are shown in Figure 47, where blue points represent original 

GOTHIC simulation results and red circles are corrected results based on OMIS prediction. The 

corrected results based on OMIS prediction tends to be closer to HF data than the tests in GELI 

condition. It meets the expectation that OMIS approach has good predictive capability in GILI 

condition. 

 

Figure 47. Comparisons between Original GOTHIC Simulation Results and Corrected Results 

based on OMIS Prediction of Test 4 

6.3.2. Extrapolation of Boundary Condition 

In this case, two cavities with different boundary conditions are modeled, as shown in 

Figure 48. The boundary and injection conditions are listed in Table 20. Dataset A contains the 

case 1-12 in the previous case study discussed in Section 6.2. Dataset D, E, F and G respectively 
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contain the cases with fixed uniform heat flux 100, 120, 150 and 200 W/m2 on top wall. The 

averaged heat removal flux from top wall in the cases of Dataset A are listed in Table 20. 

 
 

(a) Cold Top Wall with Fixed T = 20 C (b) Cold Top Wall with Fixed Heat Flux 

Figure 48. Two Cavity Models with Different Boundary Conditions 

Table 20. Boundary and Injection Conditions of Datasets in Extrapolation of Boundary 

Condition Case Study 

Dataset Boundary Condition 
Injection 

Temperature 

Injection 

Rate 

Data 

Size 

A 

1 

Cold Top Wall with 

Fixed T = 20 C  

26.6 W/m2 30 C 0.1 m/s 

12*1850 

2 55.0 W/m2 33 C 0.2 m/s 

3 88.7 W/m2 36 C 0.3 m/s 

4 128.9 W/m2 39 C 0.4 m/s 

5 57.6 W/m2 42 C 0.1 m/s 

6 104.6 W/m2 45 C 0.2 m/s 

7 153.4 W/m2 48 C 0.3 m/s 

8 207.8 W/m2 51 C 0.4 m/s 

9 87.8 W/m2 54 C 0.1 m/s 

10 153.1 W/m2 57 C 0.2 m/s 

11 216.7 W/m2 60 C 0.3 m/s 

12 284.8 W/m2 63 C 0.4 m/s 

D 

Cold Top Wall with 

Fixed Heat Flux  

100 W/m2 

48 C 0.3 m/s 4*1850 
E 120 W/m2 

F 150 W/m2 

G 200 W/m2 

* For each case, one HF simulation is performed by Star CCM+, four LF simulations are performed 

by GOTHIC with coarse meshes (1/10, 1/15, 1/25, 1/30 m). Each case generates 1850 data points. 
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The comparisons between original GOTHIC simulation results and corrected results based 

on OMIS prediction with Dataset E as testing case are shown in Figure 49, where blue points 

represents original GOTHIC simulation results and red circles are corrected results based on OMIS 

prediction. OMIS approach presents great predictive capability on velocities, but some predictions 

on temperature are not as good as others. Predicted temperatures in LF simulation and ML 

prediction are both higher than the values in HF data. 

 

Figure 49. Comparisons between Original GOTHIC Simulation Results and Corrected Results 

based on OMIS Prediction with Dataset E as Testing Case 

 

Figure 50. Distribution of Prediction Error of Temperature using Different Mesh Sizes with Heat 

Flux Equal to 120 W/m2 
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(a) 100 W/m2 

  

(b) 150 W/m2 (c) 200 W/m2 

Figure 51. Distribution of Prediction Error of Temperature using Different Mesh Sizes with Heat 

Flux Equal to (a) 100 W/m2 (b) 150 W/m2 (c) 200 W/m2 

To find out the locations of these “bad” prediction, the distribution of prediction error of 

temperature is plotted in Figure 50. It shows that these “bad” predictions mainly locate on the left 

top part of the cavity, which have been marked in red circles, no matter which mesh size is applied. 

Heat transfer is a little bit underestimated in LF simulation and ML prediction. Compared with 

training cases, the heat removal in this region is higher in testing cases because a fixed heat flux is 
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required. For example in case A4, although the averaged heat flux is 128.9 W/m2 and similar to 

case E, the real heat flux at the left top part is much smaller than 128.9 W/m2. The heat flux is not 

uniform along the top wall. This underlying physics is learned by the well-trained FNN and 

reflected on the prediction. Therefore, this well-trained FNN estimates a relatively high 

temperature for the case where the real temperature is low since the heat flux is higher than what 

FNN expected. This sort of “wrong” learning in the left top part also reflects in the predictions on 

Dataset D, F and G, which are shown in Figure 51. The NRMSE of predictions are compared for 

these four tests, as listed in Table 21. Smaller mean of KDE distance implies smaller NRMSEs 

and better predictions.  

Table 21. Prediction Results of the Extrapolation of Boundary Condition Case Study 

Test 

NO. 

Training 

Dataset 

Testing 

Dataset 

Physics 

Coverage 

Condition 

NRMSE 

(u) 

NRMSE 

(v) 

NRMSE 

(T) 

Mean of 

KDE 

Distance 

1 

A 

D (100W/m2) 

GELI 

0.254 0.297 0.034 0.2466 

2 E (120W/m2) 0.156 0.202 0.026 0.2444 

3 F (150W/m2) 0.280 0.305 0.043 0.2493 

4 G (200W/m2) 0.623 0.658 0.087 0.2566 

 

6.3.3. Extrapolation of Dimension 

In this case, cavities with different dimensions are modeled. The boundary and injection 

conditions are listed in  

Table 22. Dataset A contains the case 1-12 in the previous case study discussed in Section 

6.2. Dataset H, I, J and K respectively contain the cases with length equal to 1.2m, 1.5m, 2m and 

5m. Same nodalization are applied for all the simulations: 10*10, 15*15, 25*25 and 30*30. Dataset 

A is applied as training data for all the tests in this section, and other datasets are set as testing 

data. 

The comparisons between original GOTHIC simulation results and corrected results based 

on OMIS prediction with Dataset E as testing case are shown in Figure 52, where blue points 

represents original GOTHIC simulation results and red circles are corrected results based on OMIS 

prediction. OMIS approach presents good predictive capability on velocities and temperature 

compared with LF simulations. 

 



www.manaraa.com

   

106 

 

Table 22. Boundary and Injection Conditions of Datasets in Extrapolation of Boundary 

Condition Case Study 

Dataset 
Dimension (Height & 

Length) 

Injection 

Temperature 
Injection Rate Data Size 

A 

1 

1m*1m  

30 C 0.1 m/s 

12*1850 

2 33 C 0.2 m/s 

3 36 C 0.3 m/s 

4 39 C 0.4 m/s 

5 42 C 0.1 m/s 

6 45 C 0.2 m/s 

7 48 C 0.3 m/s 

8 51 C 0.4 m/s 

9 54 C 0.1 m/s 

10 57 C 0.2 m/s 

11 60 C 0.3 m/s 

12 63 C 0.4 m/s 

H 1.2m*1.2m 

48 C 0.3 m/s 4*900 
I 1.5m*1.5m 

J 2m*2m 

K 5m*5m 

* For each case in A, one HF simulation is performed by Star CCM+, four LF simulations are 

performed by GOTHIC with different coarse meshes (1/10, 1/15, 1/25, 1/30 m). For each case in 

H~K, one HF simulation is performed by Star CCM+, one LF simulation is performed by GOTHIC 

with same nodalization (30*30). The coarse mesh size used in case H~K are respectively 1.2/30, 

1.5/30, 2/30 and 5/30 m. 

 

Figure 52. Comparisons between Original GOTHIC Simulation Results and Corrected Results 

based on OMIS Prediction with Dataset H as Testing Case 

The NRMSEs of predictions are compared for these four tests, as listed in Table 23. Smaller 

mean of KDE distance implies smaller NRMSEs and better predictions. This feature is also 
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illustrated in the comparison of Physical Feature Coverages (PFCs) in Figure 53, where red points 

represent testing data and black points represent training data. The values of NRMSEs are much 

higher than other case studies since the physics coverage is much less, which can be observed in 

Figure 53. For the test with Dataset H as testing data, testing data is almost fully covered by training 

data. For other tests, testing data is rarely covered, which can be considered as GELE condition. 

Both of global physics (dimension) and local physics (physical features) are extrapolative. This 

explains why OMIS approach does not present good predictive capability in this case study.  

Table 23. Prediction Results of the Extrapolation of Boundary Condition Case Study  

Test 

NO. 

Training 

Dataset 

Testing 

Dataset 

Physics 

Coverage 

Condition 

NRMSE 

(u) 

NRMSE 

(v) 

NRMSE 

(T) 

Mean of 

KDE 

Distance 

1 

A 

H (1.2 m) GELI 0.291 0.378 0.043 0.2039 

2 I (1.5 m) 

GELE 

0.552 0.785 0.083 0.2819 

3 J (2 m) 0.803 1.163 0.123 0.3059 

4 K (5 m) 1.106 2.852 0.106 0.3373 

 

 

Figure 53. Physical Feature Coverages in Extrapolation of Boundary Condition Case Study 

6.3.4. Lessons Learned 

This section has discussed the applications of OMIS approach in GELI, GILI and GELE 

conditions. Several lessons can be learned from this section: 

(Section 6.3.1) In GELI condition, smaller KDE distance means higher similarity, and 

smaller prediction error. The corrected results based on OMIS prediction tends to be closer to 

HF data as the similarity of training data and testing data increases. Similarity of training data 
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should be considered in the first place to construct the training database. The application of ML 

algorithm requires the training database should include data points at a certain scale, however, the 

similarity or relevance of data should not be ignored. Adding too much dissimilar or irrelevant 

data may “hurt” the training and predictive capability of ML algorithms. 

(Section 6.3.2) Essential difference in physics between training cases and testing cases 

should be sufficiently considered and reflected in the identification of physical features. For 

example in the extrapolation of boundary condition case study, the feature of non-uniform heat 

flux distribution is learned by the well-trained FNN and reflected on the prediction. This leads to 

a “bad” prediction when this “uniform” feature is totally “wrong” in the testing case. Actually, the 

reason can be considered as the insufficiency of training database. The feature in testing case is an 

unknown to the training cases. No matter how much new data we collect from these training cases, 

the prediction cannot be improved. 

(Section 6.3.3) OMIS approach shows great predictive capability in GILI and GELI 

conditions, but not in GELE condition. This satisfies the hypothesis proposed in framework 

formulation. In the extrapolation of dimension case study, Dataset H is almost fully covered by 

training data. For other tests, testing data is rarely covered, which can be considered as GELE 

condition. Both of global physics (dimension) and local physics (physical features) are 

extrapolative. This explains why OMIS approach does not present good predictive capability in 

this case study. The reason may be that the mesh size differs too much, which greatly affects the 

values and coverage of physical features.  

6.4. Chapter Summary 

This chapter illustrates OMIS framework with the case study on mixed convection. 

Targeting on the “GELI” condition, OMIS framework is developed as a TDMI approach that deals 

with data, physical model and coarse-mesh simulation in an integrated manner using machine 

learning algorithms. By concentrating on the similarity of local physics, OMIS framework has a 

potential scalability to the globally extrapolative conditions. The underlying local physics of one 

specific physic condition is assumed to be represented by a set of Physical Features (PFs). Section 

6.2 has illustrated the OMIS framework on the mixed convection case study. The two outcomes 

of the proposed framework, error prediction and optimal mesh suggestion, present the good 
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predictive performance of this data-driven framework. Several lessons are learned from this case 

study: 

1. The proposed framework can be divided into three parts: preliminary evaluation, 

optimization and application. The first part makes efforts on the development of predictive 

capability: identifying PFs, build database and evaluate predictive capability on test matrix. The 

second part focuses on the optimization of the predictive capability by optimizing PF group, FNN 

structure and training database. After the execution of each optimization step, the predictive 

capability should be assessed again on the test matrix. The third part is to apply this optimized 

data-driven predictive capability on the target case to provide error prediction and optimal 

mesh/model suggestion. All the three parts are tightly organized but the techniques applied in each 

step are independent and non-instructive to other steps. This makes OMIS framework improvable 

when more advanced techniques or algorithms are involved and also feasible for other codes. 

2. The step of PIRT and physics decomposition before building database and performing 

data training is indispensable since the identification of PFs only depends on these involved 

physics, respective closure models and mesh sizes. It makes this data-driven framework informed 

by the knowledge base of physics. This case study shows that the local physical parameters has 

the equivalent importance as the variable gradients. 

3. The objective of optimization steps is to make a balance between accuracy and efficiency 

for the system-level thermal hydraulic modeling and simulation of multi-component, multi-

physics and multi-scale nuclear power plants. The evaluation metrics used in these steps are MSE 

of variables and computational cost for FNN training. By reducing the dimensionality of PF group, 

investigating FNN performance and similarity of training database, computation cost is saved 

while the predictive accuracy is still maintained in an acceptable level. 

Section 6.3 respectively discusses the OMIS application in GELI condition in extrapolation 

of geometry (aspect ratio), boundary condition and dimension. Smaller mean of KDE distance 

implies smaller Normalized Root Mean Squared Errors (NRMSEs) and better predictions. There 

is a positive relationship between extrapolative distance and prediction error. The metrics for 

extrapolative distance and prediction error are respectively mean of KDE distance and NRMSEs 

of the efforts in this section. 
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Similarity of training data should be considered in the first place to construct the training 

database. The application of ML algorithm requires the training database should include data 

points at a certain scale, however, the similarity or relevance of data should not be ignored. Adding 

too much dissimilar or irrelevant data may “hurt” the training and predictive capability of ML 

algorithms. These case studies also prove the importance of data sufficiency in the application of 

OMIS approach: sufficient data are required for the data-driven model to collect enough 

information and capture the underlying physics. Finally, OMIS approach shows great predictive 

capability in GILI and GELI conditions, but not in GELE condition. 

 

  



www.manaraa.com

   

111 

 

CHAPTER 7. INTEGRATION OF PROPOSED DATA-DRIVEN FRAMEWORK WITH 

EVALUATION MODEL DEVELOPMENT AND ASSESSMENT PROCESS 

7.1. Introduction 

This chapter represents the effort to integrate the proposed OMIS (Optimal Mesh/Model 

Information System) framework and EMDAP (Evaluation Model Development and Assessment 

Process). In 2005, USNRC issued an important document regulatory guide 1.203 to provide an 

acceptable Evaluation Model Development and Assessment Process (EMDAP) for the best 

estimate calculations of NPP transient and accident analysis. [10] EMDAP aimed to evaluate the 

adequacy of the applied codes and provide guidance for the following experiment and analytical 

tool development. However, the system analysis and scaling analysis in EMDAP are highly 

heuristic and difficult to implement on codes, and the mesh effect on code/model scalability was 

not fully considered. Based on the concept of Total Data-Model Integration (TDMI), the proposed 

OMIS framework treats multi-scale data, key closure models and numerical simulation in an 

integrated manner to develop an integrated data-driven model that bridge the scale gap. The data-

driven OMIS framework has a potential to be a supplement to make the implement of EMDAP 

feasible and practical. The elements of EMDAP and relevant scaling analysis are reviewed in 

Section 7.2, and the role of OMIS framework in EMDAP architecture is discussed in Section 7.3.  

7.2. Overview of Evaluation Model Development and Assessment Process (EMDAP) 

The procedure of EMDAP are illustrated in the left part of Figure 54. [10] The basic 

principles of EMDAP were developed based on the Code Scaling and Applicability Uncertainty 

(CSAU) methodology, while EMDAP has formal and explicit descriptions for the concepts, 

definitions and processes, including the PIRT (Phenomena Identification and Ranking Table), 

assessment base, evaluation model, scaling analysis.  

EMDAP includes four major elements. Element 1 aims to establish requirements for 

evaluation model capability. The exact application envelope for the Evaluation Model (EM) and 

constituent phenomena, process and key parameters within this envelope are determined and 

identified at the beginning. Specifying analysis purpose and target is important since the statement 

of purpose influences the entire process of development, assessment and analysis. Figures of Merit 

(FOMs) are defined as those quantitative standards of acceptance that are used to define acceptable 
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answers for a safety analysis. Systems, components, phases, geometries, fields, and processes that 

much be modeled are identified for the development of PIRT. It should be noted that a figure of 

merit other than the applicable acceptance criterion is more appropriate as a standard for 

identifying and ranking phenomena. The development of PIRT heavily relies on expert opinion 

which can be subjective and expensive. Therefore, it is important to validate the PIRT using 

experimentation and analysis. For the application of OMIS framework, the content in Element 1 

of EMDAP is also necessary and considered as the input for Step 1 of OMIS framework. 

The purpose of Element 2 is to provide the basis for development and assessment of EM, 

especially the experimental database and its scale-up capability. One distinctive feature of EMDAP 

is the high attention on scalability analysis on data. Because all experiments are compromised with 

full-scale plant systems, scaling analysis should be conducted to ensure the applicability of the 

data and models on analysis of full-scale plant transient. In EMDAP, scaling analysis employ both 

top-down and bottom-up approaches. The top-down approach evaluates the global system 

behavior and interactions from Integral Effect Test (IET) facilities. By deriving non-dimensional 

groups that govern similarity between facilities in different scales, the top-down scaling approach 

assumes that these groups have the scalability on the results among these facilities. The bottom-

up scaling approach mainly relies on Separate Effect Tests (SETs) or small IETs and addresses the 

scaling issues in localized plant behavior or processes.  

However, in most applications where a large number of processes and phenomena are 

involved, it is difficult to design test facilities that preserve sufficient similarity between 

experiment and full-scale plant. These physics-based non-dimensional groups are not able to fully 

represent the underlying similarity. No matter in Element 2 or Element 4, EMDAP does not 

provide a detailed guide to help on the development these non-dimensional groups and 

identification of the optimum similarity criteria. Therefore, although huge amounts of 

experimental data have been generated and collected, the ghost of scaling distortion still haunts 

around. Here is where OMIS framework can be applied as a supplement to bridge the scale gap. 

Element 3 focuses on the development of EM. EM is a collection of calculation tools (codes 

and procedures) developed and organized to meet the requirements established in Element 1. 

Information from the scaling activity (in Element 2) is fed into the EM development activity: 

scaling analysis are performed to demonstrate the relevancy and sufficiency of the collective 
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database for representing the expected behaviors and to investigate the scalability of EM for 

representing the important phenomena. The scaling uncertainty due to the extrapolation of non-

dimensional group (which may locate in GELI or GELE condition) is difficult to quantify, even 

nominally full-scale experiments do not ensure a high similarity between the experiments and 

plant. The performance of EM in this element highly relies on the scalability of the collected data 

in Element 2. 

EM adequacy is assessed in Element 4. Similar to the scaling approaches applied in 

Element 2, the EM assessment is divided into two parts. The first part (Step 13 ~ 15) focuses on 

the bottom-up evaluation of closure models and correlations by considering their applicability, 

fidelity, and scalability. The second part (Step 16 ~ 19) contributes to the top-down evaluation of 

governing equations, the integrated performance of each code and the integrated performance of 

the entire EM based on data from IETs. Compared to the first part, the second part mainly focuses 

on the integrated capability and performance of the EM. The first part is clearly described to 

implement since the target closure models mostly contribute to single phenomenon or process. In 

contrast, the second part is difficult to perform due to the complexity of involved physics and lack 

of sufficient validation data. In Step 19, the need to assess the scalability of integrated calculations 

and data for scaling distortion is proposed, however, it is not clearly explained how to implement 

this scalability assessment.  

Besides, the importance of nodalization and determination of mesh was not fully 

considered in the preparation of calculation input in Step 18. As discussed before, as one of the 

key model parameters, the effect of mesh size on the model/code performance should be fully 

considered since it also greatly affects the scalability assessment in Step 19 and uncertainty 

analysis in Step 20. Furthermore, the extrapolation application of model/code is not mentioned or 

well guided in the scalability assessment. The classification of Physics Coverage Condition (PMC) 

and definition of Physical Feature Coverage (PFC) may open a door for these extrapolation 

conditions. It also should be noted that the model consistency may occur when both of these two 

part are performed. The integration or interactions among the well-evaluated closure models in 

first part may lead to different results with the data from IETs. A data-driven Validation and 

Uncertainty Quantification (VUQ) framework 16 has been proposed to identify the model 

consistency by introducing the concept of Total Data-Model Integration (TDMI).  
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After the logical and comprehensive validation, the decision process was executed to 

evaluate whether the code meets the adequacy standard and can be used for plant scenario analysis. 

However, the acceptance criteria were not explicitly defined. 

 

Figure 54. Where OMIS Framework Supplements EMDAP 

In a word, EMDAP is heuristic and difficult to implement even if it has formal and explicit 

descriptions for the concepts, definitions and processes. Especially the assessment on scaling 

approaches and scalability assessment are not distinctly defined and explained. Besides, the mesh 

effect on code/model scalability and uncertainty analysis was not fully considered. Finally, the 

acceptance criteria were not clearly defined. The execution of EMDAP needs more the state of the 

art techniques, scaling approaches and frameworks, and decision-making systems to supplement 

and support. By treating mesh error and model error together and introducing machine learning 

algorithms to explore the local physics, OMIS framework has the potential to bridge the scale gap 

and work as a supplement to the implementation of EMDAP Step 19 in the assessment of 

integrated scalability, as shown in Figure 54. 

7.3. OMIS: A Potential Data-driven Supplement for Scalability Assessment in EMDAP 

This section proposes some thoughts on the integration of OMIS framework and EMDAP. 

As discussed in previous section, there are two main cons of EMDAP where OMIS framework 
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can support and supplement: (1) insufficient quantification of mesh effects on model/code 

scalability and uncertainty analysis; (2) obscure assessment on the scalability of model/code in 

integrated calculations. 

 

Figure 55. Illustration of the Integration of OMIS Framework and EMDAP 

The integration, information exchange and main outcomes between OMIS framework and 

EMDAP are illustrated in Figure 55. The OMIS framework follows Step 18 of EMDAP, where 

the input for integrated calculations have been prepared. Then OMIS framework obtains the 

information from four sources in EMDAP:  

1. OMIS Step 1 requires to identify the key phenomena, global QoIs and FOMs, which are 

provided by the PIRT process in EMDAP Element 1; 

2. OMIS Step 1 requires to evaluate the applicability of closure models for the key 

phenomena in the simulation tool. The model/code information can be provided by EMDAP 

Element 3, where EM is developed; 

3. OMIS Step 1 requires input information for the integrated calculations, which can be 

provided by Element 4 Step 18; 
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4. OMIS Step 2 requires to collect HF and LF data, which can be provided by EMDAP 

Element 2 where database is built.      

The OMIS framework provides two main outcomes back to EMDAP: 

1. (To EMDAP Step 14) OMIS framework provides the suggestion on optimal mesh and 

model selections. The scalability of these closure models need to be evaluated using bottom-up 

approach, where EMDAP Step 14-15 should be repeated using the suggested mesh; 

2. (To EMDAP Step 19) OMIS framework provides prediction on the simulation error of 

QoIs, which can be used to assess the scalability of the model/code in the integrated calculations. 

Besides, the biases and uncertainty” in EMDAP Step 20 (determine EM biases and 

uncertainties) includes model uncertainty/error, mesh error and other numerical uncertainties with 

the consideration of scaling effect. This “uncertainty” has the same content as the concept of 

“simulation error” in OMIS framework. 

7.4. Chapter Summary 

In this chapter, the integration of the proposed OMIS framework and EMDAP has been 

described and explained. EMDAP aimed to evaluate the adequacy of the applied codes and provide 

guidance for the following experiment and analytical tool development. However, EMDAP is 

heuristic and difficult to implement even if it has formal and explicit descriptions for the concepts, 

definitions and processes. Especially the assessment on scaling approaches and scalability 

assessment are not distinctly defined and explained. Besides, the mesh effect on code/model 

scalability and uncertainty analysis was not fully considered. Finally, the acceptance criteria were 

not clearly defined. The execution of EMDAP needs more the state of the art techniques, scaling 

approaches and frameworks, and decision-making systems to supplement and support. By treating 

mesh error and model error together and introducing machine learning algorithms to explore the 

local physics, OMIS framework has the potential to bridge the scale gap and work as a supplement 

to the implementation of EMDAP in the assessment of integrated scalability. 

The main inputs from EMDAP to OMIS framework are (1) information of the key 

phenomena, global QoIs and FOMs, which are provided by the PIRT process in EMDAP Element 

1; (2) information of closure models for the key phenomena in the simulation tool, which are 
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provided by EMDAP Element 3; (3) input information for the integrated calculations, which are 

provided by Element 4 Step 18; (4) HF and LF data, which are provided by EMDAP Element 2. 

The main outcomes from OMIS framework to EMDAP are (1) suggestion on optimal mesh 

and model selections. The scalability of these closure models need to be evaluated using bottom-

up approach, where EMDAP Step 14-15 should be repeated using the suggested mesh; (2) 

prediction on the simulation error of QoIs, which can be used to assess the scalability of the 

model/code in the integrated calculations in EMDAP Step 19 and also the uncertainty analysis in 

Step 20. 
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CHAPTER 8. CONCLUSIONS 

This work is initially motivated by the high demand on fast-running and sufficiently 

accurate simulation tools for system-level thermal-hydraulic modeling and simulation. A data-

driven framework is developed and demonstrated to improve the coarse-mesh CFD-like codes by 

predicting the simulation error and suggesting the optimal mesh size and closure models. Since 

mesh size is one of the key model parameters in the simplified boundary-layer closure models of 

these CFD-like codes, the two main error sources, model error and mesh error cannot be quantified 

separately. This makes it difficult to perform traditional Verification and Validation (V&V) on 

these coarse-mesh codes. Meanwhile, a huge amount of simulation data has been generated using 

these fast-running codes, which makes it possible to apply advanced statistical techniques and 

Machine Learning (ML) algorithms to learn from multiscale data and explore the underlying 

physics. This proposed data-driven methodology takes benefits from the increasing computational 

power and rapid development of ML techniques to integrate the data, physical models and 

numerical simulation together. Another motivation is the issues raised from scaling distortion. The 

scaling-induced uncertainty and lack of validation data hamper the credibility of system-level 

simulation that supports risk-informed analysis of safety transient scenarios in novel reactor 

systems. In addition to improve the coarse-mesh simulations, this work also provides an insight 

on the development of a data-driven scale-invariant approach to deal with scaling issues and 

provide evidence for the generation of validation data.  

In this chapter, the proposed framework and case studies are summarized in Section 8.1. 

Section 8.2 highlights the contributions and Section 8.3 outlines the future works. 

8.1. Summary Remarks 

In this work, a data-driven framework was proposed, developed and demonstrated to 

improve the coarse-mesh CFD-like codes by predicting the simulation error and suggesting the 

optimal mesh size and closure models. 

Firstly, the pros and cons of current traditional and data-driven V&V frameworks have 

been discussed if applied to the coarse-mesh CFD-like codes for system thermal-hydraulic 

modeling and simulation. Considering it is a cross-disciplinary work, the required knowledge and 

efforts from multidisciplinary fields including system thermal-hydraulic modeling and simulation, 

V&V, machine learning are also reviewed and analyzed. The scope of this work is described from 
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three aspects: (1) provide a potential data-driven approach for the validation of these CFD-like 

codes in system-level thermal-hydraulic modeling and simulations; (2) develop a data-driven 

scale-invariant approach to deal with scaling issues and provide evidence for the generation of 

validation data; (3) provide a supplement for the execution of Evaluation Model Development and 

Assessment Process (EMDAP). 

Secondly, this work investigates sufficient technical capabilities and proposes a data-

driven optimization framework. The central idea is to develop a surrogate model to represent the 

relationship between local simulation error and specific local Physical Features (PFs). The 

identification of PFs integrates the physical information of the system of interest, model 

information and the effect of mesh size. The main outcomes of OMIS framework are error 

prediction and suggestion on the optimal mesh and model selection using machine learning 

algorithms. OMIS framework is accomplished via a systematic procedure, the sub-outcomes 

include: (1) PF group is identified based on knowledge basis and has the extendibility from single 

phenomenon to complex physics; (2) scalability of identified PF group is pre-evaluated via test 

matrix and optimized by importance study before application; (3) different DNN structures are 

tested and compared to balance the prediction accuracy and computational cost; (4) data similarity 

of training data and testing data is measured using KDE distance and visualized in Physical Feature 

Coverage (PFC) using dimensionality reduction techniques, this provides a guide on the selection 

of training datasets. These outcomes not only serve on the error prediction and mesh/model 

selection, but also provide an insight on how to develop, evaluate and optimize a data-driven 

surrogate model in thermal-hydraulic modeling and simulation.  

The proposed framework can be divided into three parts: preliminary evaluation, 

optimization and application. The first part makes efforts on the development of predictive 

capability: identifying PFs, build database and evaluate predictive capability on test matrix. The 

second part focuses on the optimization of the predictive capability by optimizing PF group, FNN 

structure and training database. After the execution of each optimization step, the predictive 

capability should be assessed again on the test matrix. The third part is to apply this optimized 

data-driven predictive capability on the target case to provide error prediction and optimal 

mesh/model suggestion. All the three parts are tightly organized but the techniques applied in each 

step are independent and non-instructive to other steps. This makes OMIS framework improvable 

when more advanced techniques or algorithms are involved and also feasible for other codes. 
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Furthermore, the proposed framework has been illustrated based on the mixed convection 

case study. The entire framework including preliminary evaluation, optimization and application 

is followed and executed. Test matrix is designed and conducted to demonstrate how to apply the 

framework to a system thermal-hydraulic simulation. After the application of the framework on 

this case study, two objectives: error prediction and optimal mesh/model suggestion are 

successfully achieved. Besides, the OMIS application is discussed in different GELI conditions: 

extrapolation of geometry (aspect ratio), boundary condition and dimension. Smaller mean of KDE 

distance implies better predictions. It is found that there is a positive relationship between 

extrapolative distance and prediction error. It should be noted that the application of ML algorithm 

and advanced statistical techniques also introduces the uncertainty which is difficult to be 

quantified, although the techniques in the state of the art have been well evaluated. The uncertainty 

from the identification of PFs and insufficiency of training database are also introduced. The 

uncertainty propagation from one step to the entire framework process should be investigated in 

future. 

Lastly, the integration of OMIS framework and EMDAP is discussed in Chapter 7. The 

proposed framework provides a supplement to the implementation of Evaluation Model 

Development and Assessment Process (EMDAP) in depth. The main outcomes from OMIS 

framework to EMDAP are (1) suggestion on optimal mesh and model selections. The scalability 

of these closure models need to be evaluated using bottom-up approach in EMDAP; (2) prediction 

on the simulation error of QoIs, which can be used to assess the scalability of the model/code in 

the integrated calculations and also the uncertainty analysis in EMDAP. 

8.2. Contributions 

The contributions of this dissertation focus on: 

1. The development and demonstration of a data-driven framework to guide 

simulation error prediction and optimal mesh/model selection in system-level thermal-

hydraulic modeling and simulations. This data-driven framework makes benefits from rapid 

development of ML techniques, fast-running feature of coarse-mesh CFD-like code and increasing 

computational power. Traditionally, the simulation error prediction highly relies on verification, 

validation and uncertainty quantification, which are not suitable for these coarse-mesh CFD-like 

codes. The selection of optimal mesh and models is mainly determined by expert opinion, which 
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is not trustworthy if the models or codes are not in the application domain. By learning from 

massive data instead of human experience, OMIS framework provides a smart guide for user to 

improve the modeling and simulation. The application of ML algorithms realizes the data-driven 

concept of OMIS to "learn" information directly from data without assuming a predetermined 

equation as a model. It implies a tendency that data science and analysis plays an important role 

in the future analysis of nuclear thermal-hydraulic and safety systems. 

2. The development of a potential data-driven framework for the validation of the 

CFD-like codes in the system-level thermal-hydraulic modeling and simulations. Traditional 

V&V frameworks analyze model error and mesh error separately with another fixed, the logic of 

which is impractical to the coarse-mesh CFD-like codes since the mesh size is treated as one of 

key model parameters and mesh convergence is not expected. To overcome this difficulty in the 

V&V of CFD-like codes, OMIS framework considers these two main error sources together. OMIS 

framework treats physical models, coarse mesh sizes and numerical solvers as an integrated model, 

which can be considered as a surrogate of governing equations and closure correlations. The 

development of the integrated surrogate model does not need relevant prior knowledge, and purely 

depends on existing data. In some respects, OMIS framework is expected to provide a potential 

data-driven approach for the validation of these CFD-like codes in the system-level thermal-

hydraulic modeling and simulations. As the response of trained data-driven model, simulation 

error in each cell is estimated according to the Physical Features (PFs) in each local cell. By 

introducing the concept of TDMI and various PFs, the prediction of simulation error takes all the 

error sources into accounts and has a promising accuracy even for extrapolative conditions where 

validation data is not available. OMIS framework also has a strong flexibility to extend to other 

codes (e.g., coarse-mesh CFD simulations) where mesh size is treated as one of the key model 

parameters of closure laws. 

3. Providing an insight on the development of a data-driven scale-invariant approach 

to deal with scaling issues and provide guidance for the generation of validation data. This 

work proposes a concept of Physics Coverage Condition (PCC), which is trying to classify the 

physics condition into four different parts. One part called GELI (Global Extrapolation through 

Local Interpolation) condition indicates the situation that the global physical condition of new case 

is identified as an extrapolation of existing cases, but the local physics are similar. The underlying 

local physics is assumed to be represented by a set of Physical Features (PFs). This makes it 



www.manaraa.com

   

122 

 

possible to bridge the scale gap by exploring the local physics instead of global physics with the 

usage of advanced deep learning techniques and statistical approaches. The similarity or difference 

between the training data and testing data are quantified and visualized by defined extrapolative 

distance and Physical Feature Coverage (PFC). The data similarity is depending on the 

identification of PFs, data quality and quantity. OMIS framework is proposed to seek a technical 

basis for the preliminary development and proof-of-concept of the scale-invariant approach for the 

modeling and simulation of system thermal hydraulics in advanced nuclear reactors. 

4. The application of evaluation metrics to quantitatively measure the similarity 

between training data and testing data. The outcomes of OMIS framework include (1) 

quantitatively measuring the PF similarity of training data and testing data, and (2) identifying the 

relationship between these local PFs and local simulation error for future predictions. KDE 

distance is used as a metric to measure the similarity of training data and testing data and has a 

positive relationship with prediction error of machine learning. The development of validation data 

plan can also informed by considering to make up the “uncovered” part of Physical Feature 

Coverage (PFC) in testing cases. It is expected that the prediction by well-trained data-driven 

model has higher accuracy as the similarity of training data and testing data increases. 

5. A supplement to the execution of Evaluation Model Development and Assessment 

Process (EMDAP) in depth. EMDAP aimed to evaluate the adequacy of the applied codes and 

provide guidance for the following experiment and analytical tool development. However, 

EMDAP is heuristic and difficult to implement even if it has formal and explicit descriptions for 

the concepts, definitions and processes. Especially the assessment on scaling approaches and 

scalability assessment are not distinctly defined and explained. Besides, the mesh effect on 

code/model scalability and uncertainty analysis was not fully considered. By treating mesh error 

and model error together and introducing machine learning algorithms to explore the local physics, 

OMIS framework has a potential to bridge the scale gap and work as a supplement to the 

implementation of EMDAP in the assessment of integrated scalability. 

8.3. Future Works 

The limitations of the proposed framework exist.  

It should be noted that the proposed framework is only demonstrated on a synthetic 

example in steady state, the involved processes and phenomena are still far from the practical 
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application in real modeling and simulation of multi-component and multi-physics plant transient. 

The scalability and predictive capability of OMIS framework still need to be investigated for other 

physics (e.g., two-phase flow and boiling) with complex geometries (structure, volume size, 

location/size of injection/vent). Therefore, the first future work is focused on (1) how to extend 

the current framework to more complex physics and geometry, and (2) how to improve OMIS 

framework for plant scenario simulation.  

 Another future work is the uncertainty quantification of OMIS framework.  The main 

uncertainty sources of OMIS framework are mainly (1) ML uncertainty, which depends on the 

applied ML algorithm itself; (2) insufficiency of training data, which includes the data size, 

similarity and identification of Physical Features (PFs). The uncertainty introduced by statistical 

and ML algorithms are not quantified, the relevant uncertainty propagation needs more analysis. 

Currently, multi-layer FNN is used as the main ML algorithm. The impact of ML uncertainty may 

decrease when a FNN with more hidden layers and neurons is applied in the future, but the 

computational cost also increases. Due to its data-driven nature, performance of OMIS framework 

greatly relies the size and similarity of available data, and the identification of PFs. In current 

work, the similarity of data is quantitatively measured using KDE distance. Higher KDE distance 

implies less similarity, which means more data should be added to increase the similarity of 

training data and testing data. However, more data may not lead to better prediction since the 

similarity may reduce if irrelevant data is involved. Meanwhile, the selection of PFs is another 

challenge. The identification of PFs depends on the understanding of local physics, respective 

models applied in the computational code, and geometry conditions. These factors make it difficult 

to quantify the uncertainty from the PF selection. Technically, more PFs can capture more local 

behaviors to inform the OMIS model for further predictions. In the future, the requirements of PF 

identification for different physics and geometries should be specified. Sensitivity/importance 

study should be performed to rank the importance of selected PFs to quantify how much they 

influence the regression response and decide which PFs should be added to rise scalability or be 

ignored to reduce the dimensionality. 
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